程序语言相关知识——偏向Eigen矩阵

news2025/1/11 15:09:03
  1. 1 查看 Eigen库表示的矩阵 方法

1.1 列矩阵x在监视中,这样查看,数值右侧的圈圈 可用于更新数值 随程序
在这里插入图片描述

1.2 比较全的方法:来自于知乎:https://zhuanlan.zhihu.com/p/625334009?utm_id=0
1.3 eigen的用法:https://www.xjx100.cn/news/602489.html?action=onClick
https://blog.csdn.net/wonengguwozai/article/details/125029383

#include <Eigen/Dense>                 // 基本函数只需要包含这个头文件
Matrix<double, Matrix<double, 3, 3> A; // 固定了行数和列数的矩阵和Matrix3d一致.
Matrix<double, 3, Dynamic> B;          // 固定行数.
Matrix<double, Dynamic, Dynamic> C;    // 基本和MatrixXd一致
Matrix<double, 3, 3, RowMajor> E;      // 按行存储; 默认按列存储.
Matrix3f P, Q, R;      // 3x3 float 矩阵.
Vector3f x, y, z;      // 3x1 float 列向量.
RowVector3f a, b, c;   // 1x3 float 行向量.
VectorXd v;            // 动态长度double型列向量

// Eigen  // Matlab             // comments
x.size()  // length(x)          // 向量长度
C.rows()  // size(C,1)          // 矩阵行数
C.cols()  // size(C,2)          // 矩阵列数
x(i)      // x(i+1)             // 下标0开始
C(i,j)    // C(i+1,j+1)         

//Eigen 中矩阵的基本使用方法
A.resize(4, 4);// 如果越界触发运行时错误.
B.resize(4, 9);// 如果越界触发运行时错误.
A.resize(3, 3);// Ok; 没有越界.
B.resize(3, 9);// Ok; 没有越界.
A<< 1, 2, 3,// Initialize A. The elements can also be
     4, 5, 6,// matrices, which are stacked along cols
     7, 8, 9;// and then the rows are stacked.
B<< A, A, A;// B is three horizontally stacked A's.   三行A
A.fill(10);// Fill A with all 10's.

//Eigen 特殊矩阵生成
// Eigen                          // Matlab
MatrixXd::Identity(rows,cols)     // eye(rows,cols) 单位矩阵
C.setIdentity(rows,cols)          // C = eye(rows,cols) 单位矩阵
MatrixXd::Zero(rows,cols)         // zeros(rows,cols) 零矩阵
C.setZero(rows,cols)              // C = ones(rows,cols) 零矩阵
MatrixXd::Ones(rows,cols)         // ones(rows,cols)全一矩阵
C.setOnes(rows,cols)              // C = ones(rows,cols)全一矩阵
MatrixXd::Random(rows,cols)       // rand(rows,cols)*2-1        // 元素随机在-1->1
C.setRandom(rows,cols)            // C = rand(rows,cols)*2-1 同上
VectorXd::LinSpaced(size,low,high)// linspace(low,high,size)'线性分布的数组
v.setLinSpaced(size,low,high)// v = linspace(low,high,size)'线性分布的数组

// Eigen 矩阵分块
// Eigen                  // Matlab
x.head(n)                // x(1:n)    用于数组提取前n个[vector]
x.head<n>()              // x(1:n)    同理
x.tail(n)                // x(end - n + 1: end)同理
x.tail<n>()              // x(end - n + 1: end)同理
x.segment(i, n)          // x(i+1 : i+n)同理
x.segment<n>(i)          // x(i+1 : i+n)同理
P.block(i, j, rows, cols)// P(i+1 : i+rows, j+1 : j+cols)i,j开始,rows行cols列
P.block<rows, cols>(i, j)// P(i+1 : i+rows, j+1 : j+cols)i,j开始,rows行cols列
P.row(i)                 // P(i+1, :)i行
P.col(j)                 // P(:, j+1)j列
P.leftCols<cols>()       // P(:, 1:cols)左边cols列
P.leftCols(cols)         // P(:, 1:cols)左边cols列
P.middleCols<cols>(j)    // P(:, j+1:j+cols)中间从j数cols列
P.middleCols(j, cols)    // P(:, j+1:j+cols)中间从j数cols列
P.rightCols<cols>()      // P(:, end-cols+1:end)右边cols列
P.rightCols(cols)        // P(:, end-cols+1:end)右边cols列
P.topRows<rows>()        // P(1:rows, :)同列
P.topRows(rows)          // P(1:rows, :)同列
P.middleRows<rows>(i)    // P(i+1:i+rows, :)同列
P.middleRows(i, rows)    // P(i+1:i+rows, :)同列
P.bottomRows<rows>()     // P(end-rows+1:end, :)同列
P.bottomRows(rows)       // P(end-rows+1:end, :)同列
P.topLeftCorner(rows, cols)    // P(1:rows, 1:cols)上左角rows行,cols列
P.topRightCorner(rows, cols)   // P(1:rows, end-cols+1:end)上右角rows行,cols列
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)下左角rows行,cols列
P.bottomRightCorner(rows, cols)// P(end-rows+1:end, end-cols+1:end)下右角rows行,cols列
P.topLeftCorner<rows,cols>()    // P(1:rows, 1:cols)同上
P.topRightCorner<rows,cols>()   // P(1:rows, end-cols+1:end)同上
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)同上
P.bottomRightCorner<rows,cols>()// P(end-rows+1:end, end-cols+1:end)同上

// Eigen 矩阵元素交换
// Eigen                           // Matlab
R.row(i)= P.col(j);               // R(i, :) = P(:, i)交换列为行
R.col(j1).swap(mat1.col(j2));     // R(:, [j1 j2]) = R(:, [j2, j1]) 交换列123


//Eigen 矩阵转置
// Views, transpose, etc; all read-write except for .adjoint().
// Eigen                           // Matlab
R.adjoint()// R' 伴随矩阵
R.transpose()// R.' or conj(R')转置
R.diagonal()// diag(R)对角
x.asDiagonal()// diag(x)对角阵(没有重载<<)
R.transpose().colwise().reverse();// rot90(R)所有元素逆时针转了90度
R.conjugate()// conj(R)共轭矩阵

//Eigen 矩阵乘积
// 与Matlab一致, 但是matlab不支持*=等形式的运算.
// Matrix-vector.  Matrix-matrix.   Matrix-scalar.
y= M*x;          R= P*Q;        R= P*s;
a= b*M;          R= P- Q;      R= s*P;
a*= M;            R= P+ Q;      R= P/s;
                   R*= Q;          R= s*P;
                   R+= Q;          R*= s;
                   R-= Q;          R/= s;12345678


// Eigen 矩阵单个元素操作
// Vectorized operations on each element independently
// Eigen                  // Matlab
R= P.cwiseProduct(Q);// R = P .* Q 对应点相乘
R= P.array()* s.array();// R = P .* s 对应点相乘
R= P.cwiseQuotient(Q);// R = P ./ Q 对应点相除
R= P.array()/ Q.array();// R = P ./ Q对应点相除
R= P.array()+ s.array();// R = P + s对应点相加
R= P.array()- s.array();// R = P - s对应点相减
R.array()+= s;// R = R + s全加s
R.array()-= s;// R = R - s全减s
R.array()< Q.array();// R < Q 以下的都是针对矩阵的单个元素的操作
R.array()<= Q.array();// R <= Q矩阵元素比较,会在相应位置置0或1
R.cwiseInverse();// 1 ./ P
R.array().inverse();// 1 ./ P
R.array().sin()// sin(P)
R.array().cos()// cos(P)
R.array().pow(s)// P .^ s
R.array().square()// P .^ 2
R.array().cube()// P .^ 3
R.cwiseSqrt()// sqrt(P)
R.array().sqrt()// sqrt(P)
R.array().exp()// exp(P)
R.array().log()// log(P)
R.cwiseMax(P)// max(R, P) 对应取大
R.array().max(P.array())// max(R, P) 对应取大
R.cwiseMin(P)// min(R, P) 对应取小
R.array().min(P.array())// min(R, P) 对应取小
R.cwiseAbs()// abs(P) 绝对值
R.array().abs()// abs(P) 绝对值
R.cwiseAbs2()// abs(P.^2) 绝对值平方
R.array().abs2()// abs(P.^2) 绝对值平方
(R.array()< s).select(P,Q);// (R < s ? P : Q)这个也是单个元素的操作
R.cwiseSign();// 符号函数,矩阵大于0的置为1,小于0的变为-1,其余为0;

// Eigen 矩阵化简
// Reductions.
int r, c;
// Eigen                  // Matlab
R.minCoeff()// min(R(:))最小值
R.maxCoeff()// max(R(:))最大值
s= R.minCoeff(&r,&c)// [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s= R.maxCoeff(&r,&c)// [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum()// sum(R(:))求和
R.colwise().sum()// sum(R)列求和1×N
R.rowwise().sum()// sum(R, 2) or sum(R')'行求和N×1
R.prod()// prod(R(:))所有乘积
R.colwise().prod()// prod(R)列乘积
R.rowwise().prod()// prod(R, 2) or prod(R')'行乘积
R.trace()// trace(R)迹
R.all()// all(R(:))且运算
R.colwise().all()// all(R) 且运算
R.rowwise().all()// all(R, 2) 且运算
R.any()// any(R(:)) 或运算
R.colwise().any()// any(R) 或运算
R.rowwise().any()// any(R, 2) 或运算1234567891011121314151617181920

// Eigen 矩阵点乘
// Dot products, norms, etc.
// Eigen                  // Matlab
x.norm()// norm(x).    模
x.squaredNorm()// dot(x, x)   平方和
x.dot(y)// dot(x, y)
x.cross(y)// cross(x, y) Requires #include <Eigen/Geometry>123456

// Eigen 矩阵类型转换 Type conversion
// Eigen                           // Matlab
A.cast<double>();// double(A)
A.cast<float>();// single(A)
A.cast<int>();// int32(A) 向下取整
A.real();// real(A)
A.imag();// imag(A)
// if the original type equals destination type, no work is done12345678

// Eigen 求解线性方程组 Ax= b
// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x= A.ldlt().solve(b));// #include <Eigen/Cholesky>LDLT分解法实际上是Cholesky分解法的改进
x= A.llt() .solve(b));// A sym. p.d.      #include <Eigen/Cholesky>
x= A.lu()  .solve(b));// Stable and fast. #include <Eigen/LU>
x= A.qr()  .solve(b));// No pivoting.     #include <Eigen/QR>
x= A.svd() .solve(b));// Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt()  -> .matrixL()
// .lu()   -> .matrixL() and .matrixU()
// .qr()   -> .matrixQ() and .matrixR()
// .svd()  -> .matrixU(), .singularValues(), and .matrixV()1234567891011

// Eigen 矩阵特征值
// Eigen                          // Matlab
A.eigenvalues();// eig(A);特征值
EigenSolver<Matrix3d> eig(A);// [vec val] = eig(A)
eig.eigenvalues();// diag(val)与前边的是一样的结果
eig.eigenvectors();// vec 特征值对应的特征向量

在不确定是否会发生混淆时,采用.noalias() 来提升效率
xFixed.noalias() = x;  //x和xFixed同时为eigen矩阵

在变量中查看 ttps://blog.csdn.net/liualiang/article/details/123832340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1363739.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[JavaWeb玩耍日记]JDBC(不常用)

项目结构 目录 一.快速入门 二.开启事务 三.sql执行对象的executeUpdate方法 四.查询数据库 五.SQL注入案例 六.使用PreparedStatement防止Sql注入 七.数据库连接池 一.快速入门 创建新项目&#xff0c;导入mysql-connector-java-5.1.48的jar包1.使用JDBC更新一条数据有…

缘分的计算

题目描述&#xff1a; 缘分是一个外国人难以理解的中文名词。大致说来&#xff0c;缘分是一种冥冥中将两人&#xff08;通常是情人&#xff09;结合的力量。仅管这是种迷信&#xff0c;很多人——特别是女生——喜欢去计算它。 不幸的是&#xff0c;644 也是这样。有天&#x…

其他排序(基数排序,希尔排序和桶排序)(数据结构课设篇3,python版)(排序综合)

本篇博客主要详细讲解一下其他排序&#xff08;基数排序&#xff0c;希尔排序和桶排序&#xff09;也是排序综合系列里最后一篇博客。第一篇博客讲解的是LowB三人组&#xff08;冒泡排序&#xff0c;插入排序&#xff0c;选择排序&#xff09;&#xff08;数据结构课设篇1&…

11.3编写Linux串口驱动

编写串口驱动主要步骤 构建并初始化 struct console 对象&#xff0c;若串口无需支持 console 可省略此步骤 //UART驱动的console static struct uart_driver virt_uart_drv; static struct console virt_uart_console {//console 的名称&#xff0c;配合index字段使用&…

胡圆圆的暑期实习经验分享

背景 实验室一般是在研究生二年级的时候会放实习&#xff0c;在以后的日子就是自己完成毕业工作要求&#xff0c;基本上不再涉及实验室的活了&#xff0c;目前是一月份也是开始准备暑期实习的好时间。实验室每年这个时候都会有学长学姐组织暑期实习经验分享&#xff0c;本着不…

SpringBoot基于哨兵模式的Redis(7.2)集群实现读写分离

文章目录 一、前提条件二、SpringBoot访问Redis集群1. 引入依赖2. yaml配置3. 设置读写分离4. 简单的controller 三、运行四、测试1. 写2. 读3. 额外测试 环境 docker desktop for windows 4.23.0redis 7.2Idea 一、前提条件 先根据以下文章搭建一个Redis集群 Docker-Compo…

如何利用ssh将手机连接电脑

首先我们需要下载ssh&#xff0c;因为我们没有安装 sshd 命令意思是开启ssh 下载完以后要设置密码&#xff0c;我设置得是 123456 开启服务&#xff0c;查看ip 电脑连接 ssh 刚刚得ip -p 8022 后面就连接上了 我可以在这里启动我手机上的vnc

2024年汉字小达人区级选拔备考——选择题:选字填空

前面的几篇文章&#xff0c;六分成长介绍了汉字小达人区级选拔样题的前面三道题&#xff1a;看拼音写汉字、补充成语、诗词连线&#xff0c;这三道大题都是填空题&#xff0c;适合线下笔试&#xff0c;不太适合线上比赛。事实上&#xff0c;在区级自由比赛和市级比赛的时候&…

JVM是如何基于虚拟机栈运行的

众所周知&#xff1a;JVM执行Java代码是靠执行引擎实现的。执行引擎有两套解释器&#xff1a;字节码解释器、模板解释器。字节码解释器比较简单&#xff0c;不多说&#xff0c;看图。本篇文章咱们讨论模板解释器执行Java代码的底层原理。 早些年研究模板解释器看到R大用汇编写的…

学习笔记——C++运算符之比较运算符

作用&#xff1a;用于表达式的比较&#xff0c;并返回一个真值或假值 比较运算符有以下符号&#xff1a; #include<bits/stdc.h> using namespace std; int main(){//int a10;int b20;cout<<(ab)<<endl;//0//!cout<<(a!b)<<endl;//1//>cout&…

Python教程(20)——python面向对象编程基本概念

面向对象 类和对象初始化方法属性和方法self关键字继承多态 面向对象&#xff08;Object-oriented&#xff09;是一种常用的程序设计思想&#xff0c;它以对象作为程序的基本单元&#xff0c;将数据和操作封装在一起&#xff0c;通过对象之间的交互来实现程序的功能。 在面向对…

Wpf 使用 Prism 实战开发Day09

设置模块设计 1.效果图 一.系统设置模块&#xff0c;主要有个性化(用于更改主题颜色)&#xff0c;系统设置&#xff0c;关于更多&#xff0c;3个功能点。 个性化的颜色内容样式&#xff0c;主要是从 Material Design Themes UI简称md、提供的demo里复制代码过来使用的。 1.设置…

CHS_02.1.1.2+操作系统的特征

CHS_02.1.1.2操作系统的特征 操作系统的四个特征并发这个特征为什么并发性对于操作系统来说是一个很重要的基本特性资源共享虚拟异步性 各位同学 大家好 在这个小节当中 我们会学习 操作系统的四个特征 操作系统有并发 共享 虚拟和异部这四个基本的特征 其中 并发和共享是两个…

1871_什么是PCB

Grey 全部学习内容汇总&#xff1a; https://github.com/GreyZhang/g_hardware_basic 1871_什么是PCB 简单的PCB的缩写自然很容易理解&#xff0c;不过PCB涉及到的一些概念性的知识会比一个简单的缩写多得多。这里根据AD官方上的一个页面来整理一下这方面的基础知识点。 主…

【⭐AI工具⭐】AI工具导航推荐

目录 零 工具导航&#x1f449;【[AI工具集导航](https://ai-bot.cn/)】&#x1f448;&#x1f449;【[iForAI](https://iforai.com/)】&#x1f448;&#x1f449;【[AInav](https://www.ainav.cn/)】&#x1f448;&#x1f449;【[Navi AI 导航](https://www.naviai.cn/)】&a…

YTM32的低功耗PowerDown模式及唤醒管理器WKU模块

文章目录 Introduction专门的唤醒源管理器WKU外部的唤醒引脚内部的触发信号 进入PowerDown模式的操作流进入低功耗模式配合使用的其他模块 性能指标低功耗电流唤醒时间 Conclusion Introduction YTM32的低功耗系统中有设计了多种工作模式&#xff0c;功耗从高到低&#xff0c;…

大数据时代必备技能!Shell脚本学习网站助你一臂之力!

介绍&#xff1a;Shell脚本是一种用于自动化任务的脚本语言&#xff0c;它使用Shell命令来执行一系列操作。Shell脚本通常以.sh为扩展名&#xff0c;并使用#!/bin/bash作为第一行来指定使用的Shell解释器。 在Shell脚本中&#xff0c;我们可以使用各种命令和控制结构来实现自动…

【大数据】Flink CDC 的概览和使用

Flink CDC 的概览和使用 1.什么是 CDC2.什么是 Flink CDC3.Flink CDC 前生今世3.1 Flink CDC 1.x3.2 Flink CDC 2.x3.3 Flink CDC 3.x 4.Flink CDC 使用5.Debezium 标准 CDC Event 格式详解 1.什么是 CDC CDC&#xff08;Change Data Capture&#xff0c;数据变更抓取&#xf…

汽车电子行业的 C 语言编程标准

前言 之前分享了一些编程规范相关的文章&#xff0c;有位读者提到了汽车电子行业的MISRA C标准&#xff0c;说这个很不错。 本次给大家找来了一篇汽车电子行业的MISRA C标准的文章一同学习下。 什么是MISRA&#xff1f; MISRA (The Motor Industry Software Reliability Ass…

Linux-文件系统管理实验2

1、将bin目录下的所有文件列表放到bin.txt文档中&#xff0c;并将一共有多少个命令的结果信息保存到该文件的最后一行。统计出文件中以b开头的所有命令有多少个&#xff0c;并将这些命令保存到b.txt文档中。将文档中以p结尾的所有命令保存到p.txt文件中&#xff0c;并统计有多少…