每个AI/ML工程师必须了解的人工智能框架和工具

news2025/2/24 7:53:24

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

在迅速发展的技术格局中,生成式AI作为革命性力量,改变了开发人员和AI / ML工程师解决复杂问题和创新的方式。本文深入探讨了生成式AI的世界,揭示了每个开发人员都必不可少的框架和工具。

LangChain

由Harrison Chase开发,于2022年10月首次亮相,LangChain是一个开源平台,旨在构建强大的应用程序,这些应用程序由LLM提供支持,例如ChatGPT和各种定制的应用程序。

LangChain力求为数据工程师提供一个全面的工具包,用于在不同的用例中使用LLM,包括聊天机器人、自动问答、文本摘要等等。


上图显示了LangChain如何处理和处理信息以响应用户提示。最初,系统从包含大量数据的大型文档开始。然后将该文档分解为更小、更容易管理的块。

然后,这些块被嵌入到矢量中——这是一个将数据转换为系统可以快速和高效检索的格式的过程。这些向量存储在向量存储中,本质上是一个用于处理矢量化数据的优化数据库。

当用户向系统输入提示时,LangChain查询此向量存储以查找与用户请求密切匹配或相关的信息。系统利用大型LLM来理解用户提示的上下文和意图,这有助于从向量存储中检索相关信息。

一旦识别出相关信息,LLM就会使用它来生成或完成准确解决查询的答案。这最后一步导致用户接收到定制的响应,这是系统的数据处理和语言生成功能的输出。

SingleStore Notebook

SingleStore Notebook基于Jupyter Notebook,是一种创新的工具,可显著提高数据浏览和分析过程的效率,尤其适用于使用SingleStore分布式SQL数据库的人员。它与Jupyter Notebook的集成使其成为一个熟悉和强大的平台,可供数据科学家和专业人士使用。以下是其关键功能和优势的摘要:

原生SingleStore SQL支持:这个功能简化了直接在notebook中查询SingleStore分布式SQL数据库的过程。它消除了复杂的连接字符串,提供了更安全和直接的方法进行数据探索和分析。

  • SQL/Python互操作性:这允许无缝集成SQL查询和Python代码。用户可以在notebook中执行SQL查询,并将结果直接用于Python数据框架,反之亦然。这种互操作性对于有效的数据操作和分析至关重要。
  • 协作工作流程:notebook支持共享和协作编辑,使团队成员能够共同合作的数据分析项目。这个功能增强了团队有效协调和集成专业知识的能力。
  • 交互式数据可视化:支持流行的数据可视化库(如Matplotlib和Plotly),SingleStore Notebook使用户能够直接在notebook环境中创建交互式和信息丰富的图表。这个功能对需要以视觉方式传达结果的数据科学家至关重要。
  • 易用性和学习资源:该平台易于使用,提供模板和文档以帮助新用户快速入门。这些资源对于学习notebook的基础知识和执行复杂的数据分析任务至关重要。
  • 未来增强和集成:SingleStore团队致力于持续改进notebook,计划引入导入/导出、代码自动完成等功能,以及用于各种方案的notebook库。还有期待可以促进在SingleStoreDB中编写SQL或Python代码的机器人功能。
  • 简化Python代码集成:一个未来目标是使原型化的Python代码更容易集成到notebooks中,并作为存储过程集成到数据库中,从而提高系统的整体效率和功能。

SingleStore Notebook是数据专业人员的强大工具,将Jupyter Notebook的多功能性与SingleStore SQL数据库的专门增强相结合。它关注易用性、协作和交互式数据可视化,以及未来增强的承诺,使其成为数据科学和机器学习社区的宝贵资源。

可以使用SingleStore Notebooks功能免费尝试不同的教程。


我们有非常有趣的教程,例如图片识别、图片匹配、构建能看会说会说的LLM应用程序等,您都可以免费试用。

LlamaIndex

LlamaIndex是一个高级编排框架,旨在放大GPT-4等LLM的功能。尽管LLM本身很强大,因为它们是在大量公开数据集上训练的,但它们往往缺乏与私有或特定领域的数据交互的手段。LlamaIndex弥合了这一差距,提供了一个结构化的方式来摄取、组织和利用各种数据源——包括API、数据库和PDF。

通过将这些数据索引到针对LLM优化的格式,LlamaIndex便于自然语言查询,允许用户在不需要重新训练模型的情况下,无缝地与其私有数据对话。这个框架是通用的,它满足了新手的高级API进行快速设置的需求,也满足了通过低级API进行深入定制的专家的需求。本质上,LlamaIndex解锁了LLM的全部潜力,使它们对个性化的数据需求更易于访问和适用。

LlamaIndex如何工作?


LlamaIndex充当桥梁,连接LLM强大的功能与各种数据源,从而开启了一个新的应用领域,这些应用程序可以利用定制数据和高级语言模型之间的协同效应。通过提供数据提取、索引和自然语言查询接口的工具,LlamaIndex使开发人员和企业能够构建强大、数据增强的应用程序,这些应用程序可以显著提高决策和用户参与度。


LlamaIndex通过一个系统的工作流程运行,首先会加载一组文档。最初,这些文档会经历一个加载过程,在这个过程中它们会被导入系统。加载后,数据会被解析以分析和组织内容,使其可理解。解析后,信息会被索引以实现最佳检索和存储。

这些索引数据被安全地存储在一个中心存储库中,名为“store”。当用户或系统希望从这个数据存储中检索特定信息时,他们可以发出查询。作为响应,相关数据会被提取并作为响应传送出来,这可能是一组相关的文档,或从中提取的特定信息。整个过程展示了LlamaIndex如何有效地管理和检索数据,确保快速准确地响应用户查询。

Llama 2 

Llama 2是Meta开发的一种新一代语言模型。它是原始Llama的继任者,在规模、效率和性能方面都有所增强。Llama 2模型的参数范围从70亿到700亿,适应不同的计算能力和应用程序。Llama 2针对聊天机器人集成进行了优化,在对话用例中表现出色,提供细微和连贯的响应,这将会推动会话式AI的发展。

Llama 2是在公开可用的在线数据上进行预训练的。这涉及到将模型暴露在大量文本数据(如书籍、文章和其他书面内容来源)上。预训练的目标是帮助模型学习一般的语言模式,并获得广泛的语言结构理解。它还涉及监督微调和来自人类反馈的强化学习(RLHF)。

RLHF的一个组成部分是拒绝抽样,其中涉及从模型中选择一个响应并根据人类反馈接受或拒绝它。 RLHF的另一个组成部分是基于人类反馈直接更新模型策略的近端策略优化(PPO)。最后,迭代完善确保模型通过有监督的迭代和更正达到所需的性能水平。

Hugging Face 

Hugging Face是一个多方面的平台,在人工智能的景观中发挥着关键作用,特别是在自然语言处理(NLP)和生成式AI领域。它包含了各种相互协作的要素,使用户能够探索、构建和共享AI应用程序。

以下是它的关键方面:

1. 模型集线:

  • Hugging Face拥有大量针对多样NLP任务预训练的模型仓库,包括文本分类、问答、翻译和文本生成。
  • 这些模型是在大规模数据集上训练的,可以针对具体要求进行微调,使它们可以用于各种用途。
  • 这消除了用户从头开始训练模型的需要,节省了时间和资源。

2. 数据集:

  • 与模型库一起,Hugging Face提供了大量针对NLP任务的数据集。
  • 这些数据集涵盖了各个领域和语言,为训练和微调模型提供了宝贵资源。
  • 用户也可以贡献自己的数据集,丰富平台的数据资源并促进社区协作。

3. 模型训练和微调工具:

  • Hugging Face提供了在特定数据集和任务上训练和微调现有模型的工具和功能。
  • 这允许用户根据具体需求定制模型,改善他们在目标应用中的性能和准确性。
  • 该平台提供灵活的训练选项,包括本地机器上的本地训练或用于大型模型的基于云的解决方案。

4. 应用程序构建:

  • Hugging Face通过与流行的编程库(如TensorFlow和PyTorch)无缝集成,方便了AI应用程序的开发。
  • 这使得开发人员可以使用预训练模型构建聊天机器人、内容生成工具和其他AI驱动的应用程序。
  • 提供了许多应用程序模板和教程来指导用户并加速开发过程。

5. 社区和协作:

  • Hugging Face拥有一个充满活力的开发者、研究人员和AI爱好者社区。
  • 该平台通过模型共享、代码存储库和讨论论坛等功能促进了协作。
  • 这种协作环境有助于知识共享、加速创新并推动NLP和生成式AI技术的发展。

Hugging Face不仅仅是一个模型仓库。它充当一个全面的平台,囊括了模型、数据集、工具和一个蓬勃发展的社区,使用户能够轻松地探索、构建和共享AI应用程序。这使得它成为个人和组织在努力利用AI的力量实现自己目标时的宝贵资产。

Haystack

Haystack可以归类为一个端到端的框架,用于构建由各种NLP技术驱动的应用程序,这些技术包括但不限于生成式AI。虽然它不直接专注于从头开始构建生成模型,但它提供了一个稳固的平台用于:

1. 检索增强生成(RAG):

Haystack在将检索式方法和生成式方法结合用于搜索和内容创建方面表现优异。它允许集成各种检索技术,包括向量搜索和传统关键词搜索,以检索相关文档供进一步处理。然后,这些文档用作生成模型的输入,从而产生更加关注上下文的相关输出。

2. 各种NLP组件:

Haystack提供了广泛的工具和组件,用于完成各种NLP任务,包括文档预处理、文本摘要、问答和命名实体识别。这允许构建复杂的流程,将多种NLP技术组合起来实现特定目标。

3. 灵活性和开源:

Haystack是一个构建在流行的NLP库(如Transformers和Elasticsearch)之上的开源框架。这允许自定义和与现有工具和工作流程的集成,使其能够适应不同的需求。

4. 可扩展性和性能:

Haystack旨在有效地处理大量数据集和工作负载。 它与强大的向量数据库(如Pinecone和Milvus)集成,即使数以百万计的文档,也能实现快速准确的搜索和检索。

5. 生成AI集成:

Haystack可以与GPT-3和BART等流行的生成模型无缝集成。这允许用户在基于Haystack构建的应用程序中利用这些模型的功能来执行文本生成、摘要和翻译等任务。

虽然Haystack的重点不完全是生成AI,但它为构建利用这项技术的应用程序奠定了坚实的基础。它在检索、各种NLP组件、灵活性和可扩展性方面的综合优势,使其成为开发者和研究人员探索生成AI在各种应用中潜力的有价值框架。

总之,生成式AI的格局正在迅速发展,像HuggingFace、LangChain、LlamaIndex、Llama2、Haystack和SingleStore Notebooks这样的框架和工具正在引领这场进步。这些技术为开发人员提供了将AI集成到项目中的丰富选择,无论他们是从事自然语言处理、数据分析还是复杂的AI应用程序开发

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1347935.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构与算法教程,数据结构C语言版教程!(第二部分、线性表详解:数据结构线性表10分钟入门)三

第二部分、线性表详解:数据结构线性表10分钟入门 线性表,数据结构中最简单的一种存储结构,专门用于存储逻辑关系为"一对一"的数据。 线性表,基于数据在实际物理空间中的存储状态,又可细分为顺序表&#xff…

PyTorch的Tensor(张量)

一、Tensor概念 什么是张量? 张量是一个多维数组,它是标量、向量、矩阵的高维拓展 Tensor与Variable Variable是torch.autograd中的数据类型,主要用于封装Tensor,进行自动求导。 data: 被包装的Tensorgrad: data的梯度&…

windows进行udp端口转发,解决项目中服务器收不到组播数据的问题

说明 windows7的netsh interface portproxy命令只支持tcp端口转发 如果要进行udp端口转发可以使用sokit 运行sokit 端口转发(以为tcp作为讲解,udp类似) 选择转发器 输入监听地址(SRC地址)和端口 输入转发地址&am…

【Linux】Linux 下基本指令 -- 详解

无论是什么命令,用于什么用途,在 Linux 中,命令有其通用的格式: command [-options] [parameter] command:命令本身。-options:[可选,非必填]命令的一些选项,可以通过选项控制命令的…

MySQL存储过程、创建、调用、查看、删除、存储过程与函数的额区别、缺陷等、存储过程写分页等

MySQL存储过程 1、存储过程的定义2、存储过程使用的意义3、存储过程的创建4、存储过程的调用5、存储过程的查看6、存储过程的删除7、存储及过程与函数的区别8、存储过程的缺陷9、存储过程写分页 1、存储过程的定义 存储过程:存储过程(Stored Procedure&…

【Java EE初阶三 】线程的状态与安全(下)

3. 线程安全 线程安全:某个代码,不管它是单个线程执行,还是多个线程执行,都不会产生bug,这个情况就成为“线程安全”。 线程不安全:某个代码,它单个线程执行,不会产生bug&#xff0c…

【第5期】前端Vue使用Proxy+Vuex(store、mutations、actions)跨域调通本地后端接口

本期简介 本期要点 本地开发前后端如何跨域调用全局请求、响应处理拦截器处理封装HTTP请求模块编写API请求映射到后端API数据的状态管理 一、 本地开发前后端如何跨域调用 众所周知,只要前端和后端的域名或端口不一样,就存在跨域访问,例如&…

QString设置小数点精度位数

QString设置小数点精度位数 Chapter1 QString设置小数点精度位数Chapter2 Qt中QString.toDouble有效位数6位问题以及数据小数点有效位数的处理问题一:QString.toDouble有效位只有6位问题二:小数点有效位数的问题 Chapter3 qt QString转Double只显示6位数字的问题(精…

FTP的基本介绍

FTP ftp的介绍: ftp是一个可以提供共享文件的服务器,他可以通过iis.msc也就是windows 的服务器管理器来打开,或者通过cmd命令行打开 如何使用iis.msc打开ftp,如何使用cmd打开ftp ,如何匿名登录ftp,ftp和…

设计模式-调停者模式

设计模式专栏 模式介绍模式特点应用场景调停者模式与命令模式的比较代码示例Java实现调停者模式Python实现调停者模式 调停者模式在spring中的应用 模式介绍 调停者模式是一种软件设计模式,主要用于模块间的解耦,通过避免对象之间显式的互相指向&#x…

YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)

一、本文介绍 本文给家大家带来的改进机制是iRMB,其是在论文Rethinking Mobile Block for Efficient Attention-based Models种提出,论文提出了一个新的主干网络EMO(后面我也会教大家如何使用该主干,本文先教大家使用该文中提出的注意力机制…

Java超高精度无线定位技术--UWB (超宽带)人员定位系统源码

UWB室内定位技术是一种全新的、与传统通信技术有极大差异的通信新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据,从而具有GHz量级的带宽。 UWB(超宽带)高精度定位系统是一…

08.哲说建造者模式(Builder Pattern)

“The odds that we’re in ‘base reality’ is one in billions.” —— Elon Musk 这段话出自马斯克在2016年的一次演讲,“人类活在真实世界的几率,可能不到十亿分之一”。此言一出,可谓一石激起千层浪。有人嘲讽马斯克是“语不惊人死不休…

论文阅读——SG-Former

SG-Former: Self-guided Transformer with Evolving Token Reallocation 1. Introduction 方法的核心是利用显著性图,根据每个区域的显著性重新分配tokens。显著性图是通过混合规模的自我关注来估计的,并在训练过程中自我进化。直观地说,我们…

3D视觉-相机选用的原则

鉴于不同技术方案都有其适用的场景,立体相机的选型讲究的原则为“先看用途,再看场景,终评精度”,合适的立体相机在方案中可以起到事半功倍的效果。从用途上来进行划分,三维视觉方案主要应用在两个方向:测量…

PyTorch常用工具(1)数据处理

文章目录 前言1 数据处理1.1 Dataset1.2 DataLoader 前言 在训练神经网络的过程中需要用到很多的工具,最重要的是数据处理、可视化和GPU加速。本章主要介绍PyTorch在这些方面常用的工具模块,合理使用这些工具可以极大地提高编程效率。 由于内容较多&am…

【每日一题】一周中的第几天

文章目录 Tag题目来源解题思路方法一:模拟 写在最后 Tag 【模拟】【数学】【2023-12-30】 题目来源 1185. 一周中的第几天 解题思路 方法一:模拟 思路 题目中的日期是在 1971 到 2100 年之间的有效日期,即 1971-01-01 到 2100-12-31 范围…

Scene Creator

场景创建器是一个方便、易于使用的编辑工具,旨在简化创建新场景的过程。使用场景创建器,您可以选择一个模板场景,定义一个目录来存储您的场景,并在需要时自动将新场景添加到构建中。 下载: ​​Unity资源商店链接 资…

数据结构:第7章:查找(复习)

目录 顺序查找: 折半查找: 二叉排序树: 4. (程序题) 平衡二叉树: 顺序查找: ASL 折半查找: 这里 j 表示 二叉查找树的第 j 层 二叉排序树: 二叉排序树(Binary Search Tree&…

李宏毅 自然语言处理(Voice Conversion) 笔记

前一章笔记:李宏毅 自然语言处理(Speech Recognition) 笔记 引入 什么是voice conversion? 输入一段声音,输出另一段声音,我们希望这两端声音:内容一样,其他方面不一样&#xff08…