9.传统的轨道画线算法(完成)

news2025/1/19 20:39:04

轨道画线分为以下步骤:

1.读取摄像头图片

2.图片灰度处理,截取轨道区域的图片

3.中值滤波处理,并区域取均值后做期望差的绝对值。本人通过一些轨道图片实验,用这种方法二值化得到的效果比caany算子等方法的效果好

4.二值化后再用DBSAN聚类算法对图片分类

5.对分好类的坐标在图片中画图

具体代码如下:

import numpy as np
import cv2


colors = [ (0, 0, 0), (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128), (0, 128, 128),
                            (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0), (192, 128, 0), (64, 0, 128), (192, 0, 128),
                            (64, 128, 128), (192, 128, 128), (0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128),
                            (128, 64, 12)]

def cluster(points, radius=100):
    """
    points: pointcloud
    radius: max cluster range
    """
    print("................", len(points))
    items = []
    while len(points)>1:
        item = np.array([points[0]])
        base = points[0]
        points = np.delete(points, 0, 0)
        distance = (points[:,0]-base[0])**2+(points[:,1]-base[1])**2#获得距离
        infected_points = np.where(distance <= radius**2)#与base距离小于radius**2的点的坐标
        item = np.append(item, points[infected_points], axis=0)
        border_points = points[infected_points]
        points = np.delete(points, infected_points, 0)
        #print("................",len(points))
        #print(border_points)
        while len(border_points) > 0:
            border_base = border_points[0]
            border_points = np.delete(border_points, 0, 0)
            border_distance = (points[:,0]-border_base[0])**2+(points[:,1]-border_base[1])**2
            border_infected_points = np.where(border_distance <= radius**2)
            #print("/",border_infected_points)
            item = np.append(item, points[border_infected_points], axis=0)
            for k in border_infected_points:
                if points[k] not in border_points:
                    border_points=np.append(border_points,points[k], axis=0)
            #border_points = points[border_infected_points]
            points = np.delete(points, border_infected_points, 0)
        items.append(item)
    return items



#2.图像的灰度处理、边缘分割
def mean_img(img):
    # gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    #1.图片的灰度,截取处理
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    imgss=img[540:743, 810:1035]
    gray_img = gray_img[540:741, 810:1030]#[540:741, 810:1080]
    img2=gray_img
    print(img2.mean())

    #中值滤波
    gray_img = cv2.medianBlur(gray_img, ksize=3)
    cv2.imshow("Dilated Image", gray_img)
    cv2.waitKey(0)

    #2.行做期望差,3个值取均值再做差
    for i in range(gray_img.shape[0]):
        for j in range(gray_img.shape[1]-2):
            ss1=gray_img[i, j:j+2].mean()
            m=abs(gray_img[i][j]-ss1)
            if m>13:
                img2[i][j] =255
            else:
                img2[i][j] =0

    img2[:,-3:]=0
    cv2.imshow("img_mean", img2)
    cv2.waitKey(0)

    # 3.腐蚀膨胀消除轨道线外的点
    kernel = np.uint8(np.ones((5, 2)))
    # 膨胀图像.....为了使得轨道线更粗,且补足轨道线缺失的地方
    dilated = cv2.dilate(img2, kernel)
    #显示膨胀后的图像
    #dilated[:, -6:] = 0
    cv2.imshow("Dilated Image", dilated)
    cv2.waitKey(0)
    ss=np.argwhere(dilated>0)
    print(ss)

    #聚类算法
    items = cluster(ss, radius=5)
    print(len(items))
    i=0
    for item in items:
        print("====>", len(item))
        if len(item)>500:
            for k in item:
                imgss[k[0]][k[1]]=colors[i]
            i+=1
    cv2.imshow("ss",imgss)
    cv2.waitKey(0)

    return ss


if __name__ == '__main__':

    img_path=r"图片路径"

    img=cv2.imread(img_path)

    ss=mean_img(img)

    ss=np.array(ss)

    items=cluster(ss, radius=25)

通过以上聚类的方法处理后的图片如下:

        接下来对两类点进行处理。在这里目前想到的处理方式有两种:一是:首先对每个类取行的中值或者均值,即每个类的每行只保留一个坐标(均值或者中间值),去除掉了每行两边的坐标。但这个效果不太好,后面会附加代码和处理的图片结果;二是根据霍夫曼求直线的方法,自己重新写个获取直线。

一、取均值或者中值的代码如下:

import numpy as np
import cv2
import time


colors = [ (0, 0, 0), (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128), (0, 128, 128),
                            (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0), (192, 128, 0), (64, 0, 128), (192, 0, 128),
                            (64, 128, 128), (192, 128, 128), (0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128),
                            (128, 64, 12)]

def cluster(points, radius=100):
    """
    points: pointcloud
    radius: max cluster range
    """
    print("................", len(points))
    items = []
    while len(points)>1:
        item = np.array([points[0]])
        base = points[0]
        points = np.delete(points, 0, 0)
        distance = (points[:,0]-base[0])**2+(points[:,1]-base[1])**2#获得距离
        infected_points = np.where(distance <= radius**2)#与base距离小于radius**2的点的坐标
        item = np.append(item, points[infected_points], axis=0)
        border_points = points[infected_points]
        points = np.delete(points, infected_points, 0)
        #print("................",len(points))
        #print(border_points)
        while len(border_points) > 0:
            border_base = border_points[0]
            border_points = np.delete(border_points, 0, 0)
            border_distance = (points[:,0]-border_base[0])**2+(points[:,1]-border_base[1])**2
            border_infected_points = np.where(border_distance <= radius**2)
            #print("/",border_infected_points)
            item = np.append(item, points[border_infected_points], axis=0)
            if len(border_infected_points)>0:
                for k in border_infected_points:
                    if points[k] not in border_points:
                        border_points=np.append(border_points,points[k], axis=0)
                #border_points = points[border_infected_points]
            points = np.delete(points, border_infected_points, 0)
        items.append(item)
    return items


def k_mean(out):
    print("........................开始计算图片的均值.....................")
    median = {}
    i = 1
    for items in out:
        median[str(i)] = []
        result = items[:, :-1]
        ss = result.shape
        result = result.reshape(ss[1], ss[0])
        result = result[0].tolist()
        result = list(set(result))  # 去掉result重复的值
        for m in result:
            #print("...............", m, "...............................")
            item = np.where(items[:, :-1] == m)[0]
            # median[str(i)].append(items[item[len(item)//2]].tolist()) #中位数,有用
            median[str(i)].append([m, int(items[item][:, -1:].mean())])  # 均值
        i += 1
    return median

#直线的拟合
def lines(median,distances):
    print("...................直线的拟合......................")
    for items in median:
        n_m=np.array(median[items])#转换为array数据
        means=n_m[:,1:]#取坐标的第二列
        lens=n_m[-1][0]+1#总共多少个坐标,即坐标个数
        #print(lens)

        #1.获取x1,x2的坐标
        if lens%4>2:
            x10=lens//4+1
        else:
            x10 = lens // 4
        x20=x10*3
        x=lens//2
        #print("x1,x2:  ",x10,x20)

        #2.获取y1,y2的坐标
        y10=means[:lens//2].mean()
        y20 = means[lens // 2-1:].mean()
        y=means.mean()
        #print("y1,y2:  ", y10, y20)

        #3.获取直线斜率k k=(y1-y2)/(x1-x2)
        k=(y10-y20)/(x10-x20)
        #print("k:  ",k)
        #print("x,y:      ",x,y)

        #4.预测某个点的y值 y-pred=k*(x_pred-x)+y  n_m[i]
        for i in range(len(n_m)):
            y_pred = k * (n_m[i][0] - x) + y
            #print("===>",y_pred,n_m[i][0],n_m[i][1])
            if abs(y_pred-n_m[i][1])>distances:
                n_m[i][1]=y_pred
                #median[items][i][1]=int(y_pred)
        median[items]=n_m.tolist()
    return median



#2.图像的灰度处理、边缘分割
def mean_img(img,x1,x2,y1,y2):

    imgs=img.copy()
    img4 = img.copy()
    #1.图片的灰度,截取处理
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray_img = gray_img[x1:x2, y1:y2]#[540:741, 810:1080],截取轨道画线的区域,对该区域识别轨道
    img2=gray_img

    #2.中值滤波
    gray_img = cv2.medianBlur(gray_img, ksize=3)
    # cv2.imshow("Dilated Image", gray_img)
    # cv2.waitKey(0)
    st=time.time()
    for i in range(gray_img.shape[0]):
        for j in range(gray_img.shape[1]-2):
            ss1 = gray_img[i, j:j + 2].mean()
            m=abs(gray_img[i][j]-ss1)
            if m>9:
                img2[i][j] =255
            else:
                img2[i][j] =0
    img2[:,-3:]=0

    et = time.time()
    print("kmeans时间",et-st)

    # cv2.imshow("img_mean", img2)
    # cv2.waitKey(0)

    # 3.腐蚀膨胀消除轨道线外的点
    st1=time.time()
    kernel = np.uint8(np.ones((2, 1)))
    # 膨胀图像.....为了使得轨道线更粗,且补足轨道线缺失的地方
    dilated = cv2.dilate(img2, kernel)
    #显示膨胀后的图像
    # cv2.imshow("Dilated Image", dilated)
    # cv2.waitKey(0)
    kernel = np.ones((2, 2), np.uint8)
    dilated = cv2.erode(dilated, kernel)
    cv2.imshow("ss",dilated)
    cv2.waitKey(0)

    ss=np.argwhere(img2>0)#dilated
    #聚类算法
    items = cluster(ss, radius=3)
    print(len(items))
    i=0
    out=[]#获得大于300个坐标的类
    for item in items:
        if len(item)>300:
            out.append(item)
            print("====>", len(item))
            for k in item:
                img[k[0]+x1][k[1]+y1]=colors[i]#[540:743, 810:1035]
            i+=1
    # cv2.imshow("ss",img)
    # cv2.waitKey(0)
    et1 = time.time()
    print("聚类时间:", et1 - st1)

    #求聚类的每类每行的中位数
    median=k_mean(out)

    #根据中位数画图
    j=0
    for item in median:
        for k in median[item]:
            #print(k[0],k[1])
            imgs[k[0]+x1][k[1]+y1] = colors[j]  # [540:743, 810:1035]
        j+=1

    et3=time.time()
    print("中位数时间:", et3 - et1)
    print(".....................................","\n")
    #用直线拟合,首先用两个均值得到初始线的斜率及均值坐标,然后不断对远离的坐标点拟合

    distances=4
    while distances>0:
        median=lines(median,distances)
        distances-=1

    #画图
    j = 0
    for item in median:
        for k in median[item]:
            # print(k[0],k[1])
            img4[k[0] + x1][k[1] + y1] = colors[j]  # [540:743, 810:1035]
        j += 1

    et4=time.time()
    print("直线拟合消耗时间:",et4-et3)


    return out

if __name__ == '__main__':

    start=time.time()

    img_path=r图片路径"

    img=cv2.imread(img_path)

    out=mean_img(img,x1=650,x2=741,y1=825,y2=1025)

    end=time.time()

    print("time:",end-start)

        上述的直线拟合没有用最小二乘法,处理后的画图结果如下:

显然,拟合的结果并不好。下面用霍夫曼求直线的方法拟合。

二、霍夫曼圆找直线

        这种方法不用上面的代码,简单直接,并且效果更好。代码和结果如下:

代码:

import numpy as np
import time
import cv2

#2.图片处理,再通过上面的聚类函数获取轨道的类
def mean_img(img,x1,x2,y1,y2):

    #1.图片的灰度,截取处理
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray_img = gray_img[x1:x2, y1:y2]#[540:741, 810:1080],截取轨道画线的区域,对该区域识别轨道


    #2.霍夫曼直线求点
    edges=cv2.Canny(gray_img, 120, 255, apertureSize=3)
    lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 30, minLineLength=50, maxLineGap=10)

    ss=[]#获取每条直线的长度的平方,以便后面根据直线的长度排序
    for line in lines:
        #   print(type(line))
        x10, y10, x20, y20 = line[0]
        distance=(y20-y10)**2+(x10-x20)**2#每条直线长度的平方
        ss.append([distance,[x10, y10, x20, y20]])
    ss=np.array(ss)

    indexs=np.lexsort([ss[:,0]])#根据长度对直线由小到大排序,获得排序的index值
    data=ss[indexs,:]#data:排序后的ss

    lines=data[:,-1:]
    index_2 =[]#从lines获取轨道两边的直线
    index_2.append(lines[-1][0])#首先获取长度最长的一条直线
    for i in range(len(lines)-1,0,-1):
        if abs(lines[i][0][0]-index_2[0][0])>25:#另一条直线的获取是从后向前遍历,两直线一端的横坐标的差大于25时,则是另外一条直线,获得后结束后面的遍历
            index_2.append(lines[i][0])
            break
    #画图
    for iten in index_2:
        x10, y10, x20, y20 = iten
        cv2.line(img, (x10 + y1, y10 + x1), (x20 + y1, y20 + x1), (0, 0, 255), 2)
    cv2.imwrite("保存文件的路径\\120.jpg", img)
    # cv2.imshow("line_detect_possible_demo", img)
    # cv2.waitKey(0)


if __name__ == '__main__':

    start=time.time()

    img_path=r"图片路径"

    img=cv2.imread(img_path)
    #x1, x2, y1, y2:表示在相机图片中截取要画线区域的轨道部分的区域(减小计算,使背景更简单)
    out = mean_img(img, x1=650, x2=741, y1=825, y2=1025)  # x1=540,x2=741,y1=810,y2=1030

    end = time.time()

    print("time:", end - start)

效果如下:

        当然,这个是近焦相机拍的近距离的轨道,可以再用远焦相机拍远距离的轨道拟合直线,然后将两条直线融合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1344848.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

共享单车之数据可视化

文章目录 第1关&#xff1a;绘制地图第2关&#xff1a;绘制流量最高的五条线路的路程图 第1关&#xff1a;绘制地图 任务描述 本关任务&#xff1a;使用JSP在百度地图上绘制一条共享单车起始路程。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a; 如何创建地…

JavaScript使用教程(二):类型、值和变量

计算机程序通过操作值&#xff08;如数值3.14&#xff09;或文本&#xff08;如“Hello World”&#xff09;来工作。编程语言中这些可以表示和操作的值被称为类型&#xff0c;而一门语言支持的类型集也是这门语言最基本的特征。程序在需要把某个值保存下来以便将来使用时&…

python可视化界面自动生成,python如何做可视化界面

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;python gui可视化操作界面制作&#xff0c;python做出的炫酷的可视化&#xff0c;现在让我们一起来看看吧&#xff01; 目录 前言 一.环境配置 插件&#xff1a; 1.python 2.Chinese 3.Open In Default Browser 安装pyt…

链表的一些典型问题

求链表的中间节点/倒数第K个节点 等类似的随机访问&#xff0c;可以考虑用快慢指针 例 求链表的中间节点 可以定义两个指针&#xff0c;一个一次走两步一个一次走一步&#xff0c;当走的快的走到NULL时&#xff0c;走的慢的就是链表的中间节点。&#xff08;此法求出的偶数个…

ES的使用(Elasticsearch)

ES的使用&#xff08;Elasticsearch&#xff09; es是什么&#xff1f; es是非关系型数据库&#xff0c;是分布式文档数据库&#xff0c;本质上是一个JSON 文本 为什么要用es? 搜索速度快&#xff0c;近乎是实时的存储、检索数据 怎么使用es? 1.下载es的包&#xff08;环境要…

软件测试/测试开发丨学习笔记之 Python 函数

python 函数 函数的作用 函数是组织好的&#xff0c;可重复使用的&#xff0c;用来实现单一或相关联功能的代码段函数能提高应用的模块性和代码的重复利用率python 内置函数&#xff1a;docs.python.org/zh-cn/3.8/l… 函数定义 def&#xff1a;函数定义关键词function_nam…

轻松调整视频时长,创意与技术的新篇章

传统的视频剪辑工具往往难以精确控制时间&#xff0c;而【媒体梦工厂】凭借其先进的算法和界面设计&#xff0c;让视频时长的调整变得简单而精确&#xff0c;助你释放无限的创意&#xff0c;用技术为你的创意插上翅膀&#xff0c;让每一秒都有意义。 所需工具&#xff1a; 一…

MongoDB 概念介绍

1、MongoDB 应用场景 传统的关系型数据库&#xff0c;在数据操作的"三高"需求以及应对Web2.0的网站需求面前&#xff0c;显得力不从心。 High performance -对数据库高并发读写的需求。Huge Storage -对海量数据的高效率存储和访问的需求。High Scalability &&…

基于Java图书借阅管理系统设计与实现(源码+部署文档)

博主介绍&#xff1a; ✌至今服务客户已经1000、专注于Java技术领域、项目定制、技术答疑、开发工具、毕业项目实战 ✌ &#x1f345; 文末获取源码联系 &#x1f345; &#x1f447;&#x1f3fb; 精彩专栏 推荐订阅 &#x1f447;&#x1f3fb; 不然下次找不到 Java项目精品实…

Android : 使用GestureOverlayView进行手势识别—简单应用

示例图&#xff1a; GestureOverlayView介绍&#xff1a; GestureOverlayView 是 Android 开发中用于识别和显示手势的视图组件。它允许用户在屏幕上绘制手势&#xff0c;并且应用程序可以检测和响应这些手势。以下是关于 GestureOverlayView 的主要特点&#xff1a; 手势识别…

RS-485 RS-232 RS-422 区别和理解

RS-485&#xff0c;RS-232&#xff0c;RS-422区别和理解 目录概述需求&#xff1a; 设计思路实现思路分析1.概述2.区别 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a b…

Vue : 监视属性

目录 一个案例 监听属性 handler immediate vm.$watch(xxx) 深度监视 监视的简写 computed和watch之间的区别 一个案例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport"…

湘潭大学-2023年下学期-c语言-作业0x0a-综合1

A 求最小公倍数 #include<stdio.h>int gcd(int a,int b) {return b>0?gcd(b,a%b):a; }int main() {int a,b;while(~scanf("%d%d",&a,&b)){if(a0&&b0) break;printf("%d\n",a*b/gcd(a,b));}return 0; }记住最大公约数的函数&…

java cpu使用率高排查

1、top 找到对应进程&#xff0c;如这里是4060434 2、找线程 ps H -eo pid,tid,%cpu | grep 4060434找到那个线程id 高的 如4066606 3、转化16进制 printf 0x%x\n 40666064、找16进制对应的运行信息 jstack 4060434 | grep 0x3e0d2e -A 20

Hive集群出现报错信息解决办法

一、报错信息&#xff1a;hive> show databases;FAILED: HiveException java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient 解决办法&#xff1a;1.删除mysql中的元数据库&#xff08;metastore&#xff0…

MySQL:权限控制

要授予用户帐户权限&#xff0c;可以用GRANT命令。有撤销用户的权限&#xff0c;可以用REVOKE命令。这里以 MySQl 为例&#xff0c;介绍权限控制实际应用。 GRANT授予权限语法&#xff1a; GRANT privilege,[privilege],.. ON privilege_level TO user [IDENTIFIED BY passwo…

List常见方法和遍历操作

List集合的特点 有序&#xff1a; 存和取的元素顺序一致有索引&#xff1a;可以通过索引操作元素可重复&#xff1a;存储的元素可以重复 List集合的特有方法 Collection的方法List都继承了List集合因为有索引&#xff0c;所以有了很多操作索引的方法 ublic static void main…

【C语言】分支与循环语句

什么是语句&#xff1f; C语句可分为以下五类&#xff1a; 表达式语句函数调用语句控制语句 &#xff08;本篇重点介绍&#xff09;复合语句空语句 控制语句用于控制程序的执行流程&#xff0c;以实现程序的各种结构方式。C语言支持三种结构&#xff1a; 顺序结构选择结构循…

软件测试/测试开发丨Python 虚拟环境及pip环境管理

venv 虚拟环境管理 venv 虚拟环境的优点 独立的 Python 环境&#xff0c;不会产生冲突有助于包的管理删除和卸载方便 venv 使用方法 创建虚拟环境 python3 -m venv test 激活虚拟环境 切换指定文件夹Windows&#xff1a;/Scripts/macOS&#xff1a;/bin/ 执行指令&#xff…

基于STM/APM32F072制作的J-Link OB调试器项目验证

基于STM/APM32F072制作的J-Link OB调试器项目验证 &#x1f4cd;本文基于github项目&#xff1a;https://github.com/geekchun/Jlink-OB/tree/master⚡申明&#xff1a;仅限个人研究学习&#xff0c;无其他用途。&#x1f33f;采用该项目提供的固件&#xff0c;烧录STM32f4时信…