基于动态窗口的航线规划

news2024/11/29 8:45:37

MATLAB2016b可以运行

% -------------------------------------------------------------------------
% File : DWA 算法
% Discription : Mobile Robot Motion Planning with Dynamic Window Approach
% Author :Yuncheng Jiang
% License : Modified BSD Software License Agreement
% 出处:https://b23.tv/rGKUTW - b站up主【WHEELTEC】
% 源代码已经配备丰富的注释,我在其基础上添加了一些个人理解。
%               —— 2021/10/30  Poaoz 
% -------------------------------------------------------------------------

% 流程梳理 - dwa动态窗口算法
%   1)设置初始化参数:起点、终点、障碍物、小车的速度加速度限制等
%   2)根据小车当前状态及参数,计算出小车接下来一小段时间可达到的状态(主要为速度、加速度范围)
%   3)根据上述计算而得的速度、加速度,模拟出小车接下来一小段时间可达到的路径
%   4) 借助评价函数,对上述路径进行评估,并选取出最优解,然后使小车执行(执行对应的速度、角速度)
%   5)再以小车新的位置及状态为基础,重复上述“2-5”,直到判断出小车到达终点。

%  闲谈:前面学习了RRT、A*、人工势能法,综合来看,这几种方法的套路是类似的。
%  相比较,DWA更加灵活,无需栅格化地图并且更贴合小车运动实际。


% 该函数相当于dwa算法的main函数,内容包括 参数设定、流程的梳理、绘图 。
function [] = dwa_V_1_0()
close all;
clear ;
disp('Dynamic Window Approach sample program start!!')
%% 机器人的初期状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
% x=[0 0 pi/2 0 0]'; % 5x1矩阵 列矩阵  位置 0,0 航向 pi/2 ,速度、角速度均为0
x = [0 0 pi/10 0 0]'; 
% 下标宏定义 状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
POSE_X      = 1;  %坐标 X
POSE_Y      = 2;  %坐标 Y
YAW_ANGLE   = 3;  %机器人航向角
V_SPD       = 4;  %机器人速度
W_ANGLE_SPD = 5;  %机器人角速度 
goal = [10,10];   % 目标点位置 [x(m),y(m)]
% 障碍物位置列表 [x(m) y(m)]
obstacle=[%0 2;
          3 10*rand(1);
%           4 4;
%          5 4;
%            5 5;
          6 10*rand(1);
%          5 9
%          7 8
          8 10*rand(1);
          2 5;      
          4 2;
          7 7;
          9 9
            ];
%边界障碍物,防止跑出图外
 for i =-1
    for j = -1:12
        obstacle = [obstacle; [i,j]];
    end
 end     
for i =12
    for j = -1:12
        obstacle = [obstacle; [i,j]];
    end
end 
for j =-2
    for i = -1:12
        obstacle = [obstacle; [i,j]];
    end
end 
for j=13
    for i= -1:12
        obstacle = [obstacle; [i,j]];
    end
end 
 
obstacleR = 0.5;% 冲突判定用的障碍物半径
global dt; 
dt = 0.1;% 时间[s]   每一条计算得到的路径,由多个点组成  dt即为每个点之间的时间间隔
% evalParam[4]/dt+1 = 每条路径的构成点数目   这两个参数更改后,dwa算法的具体效果也将有所变化

% 机器人运动学模型参数
% 最高速度m/s],最高旋转速度[rad/s],加速度[m/ss],旋转加速度[rad/ss],
% 速度分辨率[m/s],转速分辨率[rad/s]]
Kinematic = [1.0,toRadian(20.0),0.2,toRadian(50.0),0.01,toRadian(1)];    % 调用函数里面的 model
%定义Kinematic的下标含义              % Kinematic 在路径计算相关函数中,大量用到
MD_MAX_V    = 1;%   最高速度m/s]
MD_MAX_W    = 2;%   最高旋转速度[rad/s]
MD_ACC      = 3;%   加速度[m/ss]
MD_VW       = 4;%   旋转加速度[rad/ss]
MD_V_RESOLUTION  = 5;%  速度分辨率[m/s]
MD_W_RESOLUTION  = 6;%  转速分辨率[rad/s]]

% 评价函数参数 [heading,dist,velocity,predictDT]
% 航向得分的比重、距离得分的比重、速度得分的比重、向前模拟轨迹的时间
evalParam = [0.045, 0.1 ,0.1, 3.0];
% evalParam = [2, 0.2 ,0.2, 3.0];
area      = [-3 14 -3 14];% 模拟区域范围 [xmin xmax ymin ymax]

% 模拟实验的结果
result.x=[];   %累积存储走过的轨迹点的状态值
tic; % 估算程序运行时间开始
flag_obstacle = [1-2*rand(1) 1-2*rand(1) 1-2*rand(1)];
vel_obstacle = 0.05;
temp = 0;
abc = 0;
%movcount=0;

%% Main loop   循环运行 5000次 指导达到目的地 或者 5000次运行结束
for i = 1:5000  
    % DWA参数输入 返回控制量 u = [v(m/s),w(rad/s)] 和 轨迹  ~ 即机器人将采用的控制参数
    [u,traj] = DynamicWindowApproach(x,Kinematic,goal,evalParam,obstacle,obstacleR); % 算出下发速度u/当前速度u
    x = f(x,u); % 机器人移动到下一个时刻的状态量 根据当前速度和角速度推导 下一刻的位置和角度
    abc = abc+1;
    % 历史轨迹的保存
    result.x = [result.x; x'];  %最新结果 以行的形式 添加到result.x,保存的是所有状态参数值,包括坐标xy、朝向、线速度、角速度,其实应该是只取坐标就OK
    
    % 是否到达目的地
    if norm(x(POSE_X:POSE_Y)-goal')<0.25   % norm函数来求得坐标上的两个点之间的距离
        disp('==========Arrive Goal!!==========');break;
    end
    
    %====Animation====
    hold off;               % 关闭图形保持功能。 新图出现时,取消原图的显示。
    ArrowLength = 0.5;      % 箭头长度
    
    % 机器人 ~ 绘图操作 
    % quiver(x,y,u,v) 在 x 和 y 中每个对应元素对组所指定的坐标处将向量绘制为箭头
    quiver(x(POSE_X), x(POSE_Y), ArrowLength*cos(x(YAW_ANGLE)), ArrowLength*sin(x(YAW_ANGLE)),'ok'); 
    % 绘制机器人当前位置的航向箭头
    hold on;                                                     
    %启动图形保持功能,当前坐标轴和图形都将保持,从此绘制的图形都将添加在这个图形的基础上,并自动调整坐标轴的范围
    
    plot(result.x(:,POSE_X),result.x(:,POSE_Y),'-b');hold on;    % 绘制走过的所有位置 所有历史数据的 X、Y坐标
    plot(goal(1),goal(2),'*r');hold on;                          % 绘制目标位置
    for j = 1:3
        if obstacle(j,2) > 10 && flag_obstacle(j) > 0 || obstacle(j,2) < 0 && flag_obstacle(j) < 0
            flag_obstacle(j) = -flag_obstacle(j);
        end
%        obstacle(j,2)=obstacle(j,2)+flag_obstacle(j)*vel_obstacle;
    end
    
    %plot(obstacle(:,1),obstacle(:,2),'*k');hold on;              % 绘制所有障碍物位置
    DrawObstacle_plot(obstacle,obstacleR);
    
    % 探索轨迹 画出待评价的轨迹
    if ~isempty(traj) %轨迹非空
        for it=1:length(traj(:,1))/5    %计算所有轨迹数  traj 每5行数据 表示一条轨迹点
            ind = 1+(it-1)*5; %第 it 条轨迹对应在traj中的下标 
            plot(traj(ind,:),traj(ind+1,:),'-g');hold on;  %根据一条轨迹的点串画出轨迹   traj(ind,:) 表示第ind条轨迹的所有x坐标值  traj(ind+1,:)表示第ind条轨迹的所有y坐标值
        end
    end
    
    axis(area); %根据area设置当前图形的坐标范围,分别为x轴的最小、最大值,y轴的最小最大值
    grid on;
    drawnow limitrate;  %刷新屏幕. 当代码执行时间长,需要反复执行plot时,Matlab程序不会马上把图像画到figure上,这时,要想实时看到图像的每一步变化情况,需要使用这个语句。
    for j = 1:3
        if norm(obstacle(j,:)-x(1:2)')-obstacleR < 0
           disp('==========Hit an obstacle!!==========');
           temp = 1;
           break;
        end
    end
    if temp == 1
        break;
    end
   % movcount = movcount+1;
   % mov(movcount) = getframe(gcf);%  记录动画帧
end
toc;  %输出程序运行时间  形式:时间已过 ** 秒。
disp(abc)
%movie2avi(mov,'movie.avi');  %录制过程动画 保存为 movie.avi 文件

%% 绘制所有障碍物位置   ok
% 输入参数:obstacle 所有障碍物的坐标   obstacleR 障碍物的半径
function [] = DrawObstacle_plot(obstacle,obstacleR)
r = obstacleR; 
theta = 0:pi/20:2*pi;
for id=1:length(obstacle(:,1))
 x = r * cos(theta) + obstacle(id,1); 
 y = r  *sin(theta) + obstacle(id,2);
 plot(x,y,'-m'); 
end
 %plot(obstacle(:,1),obstacle(:,2),'*m');hold on;              % 绘制所有障碍物位置
 
%% DWA算法实现     ok
% model  机器人运动学模型  最高速度[m/s],最高旋转速度[rad/s],加速度[m/ss],旋转加速度[rad/ss], 速度分辨率[m/s],转速分辨率[rad/s]]
% 输入参数:当前状态、模型参数、目标点、评价函数的参数、障碍物位置、障碍物半径
% 返回参数:控制量 u = [v(m/s),w(rad/s)] 和 轨迹集合 N * 31  (N:可用的轨迹数)
% 选取最优参数的物理意义:在局部导航过程中,使得机器人避开障碍物,朝着目标以较快的速度行驶。
function [u,trajDB] = DynamicWindowApproach(x,model,goal,evalParam,ob,R)
% Dynamic Window [vmin,vmax,wmin,wmax] 最小速度 最大速度 最小角速度 最大角速度速度
Vr = CalcDynamicWindow(x,model);  % 1)根据当前状态 和 运动模型 计算当前的参数允许范围
% 评价函数的计算 evalDB N*5  每行一组可用参数 分别为 速度、角速度、航向得分、距离得分、速度得分
%               trajDB      每5行一条轨迹 每条轨迹都有状态x点串组成
[evalDB,trajDB]= Evaluation(x,Vr,goal,ob,R,model,evalParam);  % 2)evalParam 评价函数参数 [heading,dist,velocity,predictDT]
if isempty(evalDB)
    disp('no path to goal!!');
    u=[0;0];return;
end
% 各评价函数正则化
evalDB = NormalizeEval(evalDB);
% 3)最终评价函数的计算 - 从诸多可以选择的轨迹中,选择一个“最优”的路径
feval=[];
for id=1:length(evalDB(:,1))  % 遍历各个可运行的路径,分别计算其评价得分
    feval = [feval;evalParam(1:3)*evalDB(id,3:5)']; %根据评价函数参数 前三个参数分配的权重 计算每一组可用的路径参数信息的得分
end
evalDB = [evalDB feval]; % 最后一组;加最后一列,每一组速度的最终得分
 
[maxv,ind] = max(feval);% 4)选取评分最高的参数 对应分数返回给 maxv  对应下标返回给 ind
u = evalDB(ind,1:2)';% 返回最优参数的速度、角速度  

%% 评价函数 内部负责产生可用轨迹   ok
% 输入参数 :当前状态、参数允许范围(窗口)、目标点、障碍物位置、障碍物半径、评价函数的参数
%  Vr保存着机器人当前状态可达到的 最小最大的速度与角速度   model保存着机器人的一些性能参数,如该函数中使用的 速度和角速度的分辨率
% 返回参数: (返回一堆可以行进的轨迹~这些轨迹还需进行评价函数的筛选,从而得到最终的前进路径)
%           evalDB N*5  每行一组可用参数 分别为 速度、角速度、航向得分、距离得分、速度得分
%           trajDB      每5行一条轨迹 每条轨迹包含 前向预测时间/dt + 1 = 31 个轨迹点(见生成轨迹函数)
function [evalDB,trajDB] = Evaluation(x,Vr,goal,ob,R,model,evalParam)
evalDB = [];
trajDB = [];
for vt = Vr(1):model(5):Vr(2)       %根据速度分辨率遍历所有可用速度: 最小速度和最大速度 之间 速度分辨率 递增 
    for ot=Vr(3):model(6):Vr(4)     %根据角度分辨率遍历所有可用角速度: 最小角速度和最大角速度 之间 角度分辨率 递增  
        % 轨迹推测; 得到 xt: 机器人向前运动后的预测位姿; traj: 当前时刻 到 预测时刻之间的轨迹(由轨迹点组成)
        [xt,traj] = GenerateTrajectory(x,vt,ot,evalParam(4));  %evalParam(4),前向模拟时间;
        % 各评价函数的计算
        heading = CalcHeadingEval(xt,goal); % 前项预测终点的航向得分  偏差越小分数越高
        [dist,Flag] = CalcDistEval(xt,ob,R);    % 前项预测终点 距离最近障碍物的间隙得分 距离越远分数越高
        vel     = abs(vt);                  % 速度得分 速度越快分越高
        
        stopDist = CalcBreakingDist(vel,model); % 制动距离的计算
        if dist > stopDist && Flag == 0 % 如果可能撞到最近的障碍物 则舍弃此路径 (到最近障碍物的距离 大于 刹车距离 才取用)
            evalDB = [evalDB;[vt ot heading dist vel]];   % flag 是否会碰到障碍物的标志
            trajDB = [trajDB;traj];   % 每5行 一条轨迹  
        end
    end
end

%% 归一化处理     ok
% 每一条轨迹的单项得分除以本项所有分数和
function EvalDB=NormalizeEval(EvalDB)
% 评价函数正则化
if sum(EvalDB(:,3))~= 0  % 航向得分
    EvalDB(:,3) = EvalDB(:,3)/sum(EvalDB(:,3));  %矩阵的数除  单列矩阵的每元素分别除以本列所有数据的和
end
if sum(EvalDB(:,4))~= 0  % 距离得分
    EvalDB(:,4) = EvalDB(:,4)/sum(EvalDB(:,4));
end
if sum(EvalDB(:,5))~= 0  % 速度得分
    EvalDB(:,5) = EvalDB(:,5)/sum(EvalDB(:,5));
end

%% 单条轨迹生成、轨迹推演函数.  ok
% 输入参数: 当前状态、vt当前速度、ot角速度、evaldt 前向模拟时间、机器人模型参数(没用到)
% 返回参数;   返回 预测的x和到达该x所经过的若干点 (将后者依次连线,就可得到一条预测的轨迹)
%           x   : 机器人模拟时间内向前运动 预测的终点位姿(状态); 
%           traj: 当前时刻 到 预测时刻之间 过程中的位姿记录(状态记录) 当前模拟的轨迹  
%                  轨迹点的个数为 evaldt / dt + 1 = 3.0 / 0.1 + 1 = 31         
function [x,traj] = GenerateTrajectory(x,vt,ot,evaldt)
global dt;
time = 0;
u = [vt;ot];% 输入值
traj = x;   % 机器人轨迹
while time <= evaldt   
    time = time+dt; % 时间更新
    x = f(x,u);     % 运动更新 前项模拟时间内 速度、角速度恒定
    traj = [traj x]; % 每一列代表一个轨迹点 一列一列的添加
end

%% 计算制动距离   ok
%根据运动学模型计算制动距离, 也可以考虑成走一段段圆弧的累积 简化可以当一段段小直线的累积
% 利用 当前速度和机器人可达到的加速度,计算其速度减到0所走距离  
function stopDist = CalcBreakingDist(vel,model)
global dt;
MD_ACC   = 3;% 加速度
stopDist=0;
while vel>0   %给定加速度的条件下 速度减到0所走的距离
    stopDist = stopDist + vel*dt;% 制动距离的计算 
    vel = vel - model(MD_ACC)*dt;% 
end

%% 障碍物距离评价函数    ok
%(机器人在当前轨迹上与最近的障碍物之间的距离,如果没有障碍物则设定一个常数)
% 输入参数:位姿、所有障碍物位置、障碍物半径
% 输出参数:当前预测的轨迹终点的位姿距离所有障碍物中最近的障碍物的距离 如果大于设定的最大值则等于最大值
% 距离障碍物距离越近分数越低
function [dist,Flag] = CalcDistEval(x,ob,R)
dist=100;    % 无障碍物的默认值
for io = 1:length(ob(:,1))  
    disttmp = norm(ob(io,:)-x(1:2)')-R; % 位置x到某个障碍物中心的距离 - 障碍物半径  !!!有可能出现负值吗
    if disttmp <0   % 该位置会碰到障碍物
        Flag = 1;
        break;
    else            % 碰不到障碍物
        Flag = 0;
    end
    
    if dist > disttmp   % 大于最小值 则选择最小值
        dist = disttmp;
    end
end
 
% 障碍物距离评价限定一个最大值,如果不设定,一旦一条轨迹没有障碍物,将太占比重
if dist >= 3*R %最大分数限制
    dist = 3*R;
end
 
%% heading的评价函数计算   ok
% 输入参数:当前位置、目标位置
% 输出参数:航向参数得分 = 180 - 偏差值
% 当前车的航向和相对于目标点的航向 偏离程度越小 分数越高 最大180分
function heading = CalcHeadingEval(x,goal)
theta = toDegree(x(3));% 机器人朝向
goalTheta = toDegree(atan2(goal(2)-x(2),goal(1)-x(1)));% 目标点相对于机器人本身的方位 
% 下面的 targetTheta 也就是 小车当前航向与目标点的差值 (正数)
if goalTheta > theta
    targetTheta = goalTheta-theta;% [deg]
else
    targetTheta = theta-goalTheta;% [deg]
end
 
heading = 180 - targetTheta;  

%% 计算动态窗口        model - 速度加速度等基本参数。  ok
% 返回 最小速度 最大速度 最小角速度 最大角速度速度
function Vr = CalcDynamicWindow(x,model)
V_SPD       = 4;%机器人速度
W_ANGLE_SPD = 5;%机器人角速度 
MD_MAX_V    = 1;%   最高速度m/s]
MD_MAX_W    = 2;%   最高旋转速度[rad/s]
MD_ACC      = 3;%   加速度[m/ss]
MD_VW       = 4;%   旋转加速度[rad/ss]
global dt;
% 车子速度的最大最小范围 依次为:最小速度 最大速度 最小角速度 最大角速度速度
Vs=[0 model(MD_MAX_V) -model(MD_MAX_W) model(MD_MAX_W)];
 
% 根据当前速度以及加速度限制计算的动态窗口  依次为:最小速度 最大速度 最小角速度 最大角速度速度
Vd = [x(V_SPD)-model(MD_ACC)*dt x(V_SPD)+model(MD_ACC)*dt ...
    x(W_ANGLE_SPD)-model(MD_VW)*dt x(W_ANGLE_SPD)+model(MD_VW)*dt];
 
% 最终的Dynamic Window
Vtmp = [Vs;Vd];  % 2 X 4矩阵    每一列依次为:最小速度 最大速度 最小角速度 最大角速度速度
Vr = [max(Vtmp(:,1)) min(Vtmp(:,2)) max(Vtmp(:,3)) min(Vtmp(:,4))]; % 设定的参数 与 计算的速度 比较

%% Motion Model 根据当前状态推算下一个控制周期(dt)的状态。    oh!坐标变换的计算原理?
% u = [vt; wt];当前时刻的速度、角速度 x = 状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
function x = f(x, u)
global dt;
F = [1 0 0 0 0
     0 1 0 0 0
     0 0 1 0 0
     0 0 0 0 0
     0 0 0 0 0];
 
B = [dt*cos(x(3)) 0
    dt*sin(x(3)) 0
    0 dt
    1 0
    0 1];
 
x= F*x+B*u;  % 为何这样计算,暂不明白

% 弧度和角度之间的换算
%% degree to radian
function radian = toRadian(degree)
radian = degree/180*pi;
%% radian to degree
function degree = toDegree(radian)
degree = radian/pi*180;
%% END

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1341156.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JAVA】OPENGL绕XYZ轴旋转立体图效果

JAVA-OPENGL绕XYZ轴旋转立体图效果_哔哩哔哩_bilibiliJAVA-OPENGL绕XYZ轴旋转立体图效果开始显示的是绕X轴、Y轴、Z轴旋转&#xff0c;后边是同时绕两个轴旋转&#xff0c;头有点晕&#xff0c;反应不过来了。, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转…

canal 数据同步组件

canal 数据异构组件 为啥要使用这个组件&#xff1f; 在更新DB的时候不同步更新到redis&#xff0c;es等数据库中&#xff0c;时间太久&#xff0c;而且可能会存在同步失败的问题&#xff0c;因此引入canal去拉取DB的数据&#xff0c;再去更新到redis&#xff0c;es等数据库中&…

【Harmony OS - 应用数据持久化】

概述 应用数据持久化就是应用将内存中的数据通过文件或者数据库的方式保存在设备本机上。HarmonyOS标准系统支持一下三种f方式进行持久化处理&#xff1a;包括用户首选项、键值型数据库、关系型数据库。 用户首选项 用户首选项(Preferences) 是通过将数据(Key-Value键值)保存…

【C++篇】讲解Vector容器的操作方法

文章目录 &#x1f354;vector容器概念&#x1f339;操作方法⭐赋值操作⭐容量和大小⭐插入和删除⭐数据存取 &#x1f354;vector容器概念 vector 是 C 标准库中的一个容器&#xff0c;它提供了一种动态数组的实现。vector 容器可以存储任意类型的元素&#xff0c;并且可以根…

【办公技巧】为什么有的pdf不能编辑

pdf文件大家应该都经常接触&#xff0c;但是不知道大家会遇到这种情况&#xff1a;有些PDF文件打开之后无法编辑&#xff1f;是什么原因呢&#xff1f;今天我们来分析一下都是那些原因导致的。 首先我们可以考虑一下&#xff0c;PDF文件中的内容是否是图片&#xff0c;如果确认…

【中小型企业网络实战案例 四】配置OSPF动态路由协议

【中小型企业网络实战案例 三】配置DHCP动态分配地址-CSDN博客 【中小型企业网络实战案例 二】配置网络互连互通-CSDN博客 【中小型企业网络实战案例 一】规划、需求和基本配置_大小企业网络配置实例-CSDN博客 配置OSPF 由于内网互联使用的是静态路由&#xff0c;在链路出…

软件测试/测试开发丨Git常用命令学习笔记

基于 Git 的远程仓库 远程仓库地址备注GitHubgithub.com/世界上最主流的远程开源仓库。Giteegitee.com/国内目前比较主流的开源仓库&#xff0c;也可以私有化部署。&#xff08;推荐&#xff09;GitLabgitlab.com/私有化部署&#xff0c;企业使用较多。 Git 远程仓库的应用场…

腾讯云服务器怎么购买?购买流程

腾讯云轻量应用服务器购买指南&#xff0c;有两个入口&#xff0c;一个是在特价活动上购买&#xff0c;一个是在轻量应用服务器官方页面购买&#xff0c;特价活动上购买价格更便宜&#xff0c;轻量2核2G3M带宽服务器62元一年起&#xff0c;阿腾云atengyun.com分享腾讯云轻量应用…

Codeforces Pinely Round 3 (Div. 1 + Div. 2) A~F

A.Distinct Buttons(思维) 题意&#xff1a; 你在开始时站在点 ( 0 , 0 ) (0,0) (0,0)&#xff0c;同时&#xff0c;手上有一个遥控器&#xff0c;上面有四个按钮&#xff1a; U:移动到 ( x , y 1 ) (x, y 1) (x,y1)的位置 R:移动到 ( x 1 , y ) (x 1, y) (x1,y)的位置 …

数据集介绍【02】CIFAR10

CIFAR10数据集共有60000个样本&#xff0c;每个样本都是一张32*32像素的RGB图像&#xff08;彩色图像&#xff09;&#xff0c;每个RGB图像又必定分为3个通道&#xff08;R通道、G通道、B通道&#xff09;。这60000个样本被分成了50000个训练样本和10000个测试样本。 CIFAR10数…

2024年【茶艺师(初级)】考试试卷及茶艺师(初级)考试总结

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 茶艺师&#xff08;初级&#xff09;考试试卷参考答案及茶艺师&#xff08;初级&#xff09;考试试题解析是安全生产模拟考试一点通题库老师及茶艺师&#xff08;初级&#xff09;操作证已考过的学员汇总&#xff0c;…

日常中msvcp120.dll丢失五种解决方法

在日常使用电脑的过程中&#xff0c;我们可能会遇到一些错误提示&#xff0c;其中之一就是“msvcp120.dll丢失”。那么&#xff0c;msvcp120.dll到底是什么&#xff1f;它的作用又是什么呢&#xff1f;为什么会出现丢失的情况呢&#xff1f;本文将为您详细介绍msvcp120.dll的相…

4.Python数据序列

Python数据序列 一、作业回顾 1、面试题 有一物,不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何? 白话文:有一个数字,不知道具体是多少,用3去除剩2,用5去除剩3,用7去除剩2个,问这个数是多少?1 ~ 100以内的整数 while循环: # 初始化计数器 i = …

为什么企业需要客户crm系统?

客户CRM提供数据储存&#xff0c;数据调配&#xff0c;数据分析。让传统的人工操作&#xff0c;让系统去完成。企业只需要提供原始数据就行了。举几个栗子&#xff1a; 1、客户资料的集中管理&#xff1a;可以集中存储和管理客户信息&#xff0c;包括联系方式、工商信息&#…

用户规模破亿!基于文心一言的创新应用已超4000个

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

nginx源码分析-1

使用gdb查看函数上下文&#xff1a; gdb attach nginx的work线程 监听端口状态时&#xff1a; 断点打在ngx_http_process_request 并通过浏览器触发请求时&#xff1a;

【yolov5驾驶员和摩托车佩戴头盔的检测】

yolov5驾驶员和摩托车佩戴头盔的检测 数据集和模型yolov5驾驶员和摩托车佩戴头盔的检测yolov5驾驶员和摩托车佩戴头盔的检测可视化结果 数据集和模型 数据和模型下载&#xff1a; yolov5摩托车佩戴头盔和驾驶员检测模型 yolov5-6.0-helmat-mortor-1225.zipyolov3摩托车佩戴头…

计算机操作系统(OS)——P1操作系统概述

1、操作系统的概念(定义) 1.1、什么是操作系统 __操作系统&#xff08;Operating System&#xff0c;OS&#xff09;&#xff1a;__是指控制和管理整个计算机系统的__硬件和软件__资源&#xff0c;并合理的组织调度计算机的工作和资源的分配&#xff1b;以__提供给用户和其它…

im6ull学习总结(三)文字显示

文字显示 字符编码方式 编码与字体 一个字符以不同编码形式会保存为不同的二进制数。 ASCII American Standard Code for Information Interchange”的缩写&#xff0c;美国信息交换标准代码。 一个字节的 7 位就可以表示 128 个数值&#xff0c;在 ASCII 码中最高位永远是…

实习知识整理13:在购物车界面点击提交订单进入订单信息界面

在这块主要就是对前端传到后端的数据的处理&#xff0c;然后由后端再返还到新的前端界面 首先点击下单按钮后&#xff0c; 提交购物车中所选中的信息 因为前端是将name定义为 cartList[0].cartId &#xff0c;cartList[1].cartId 形式的 所以后端需要重新定义一个类来进行封装…