Halcon颜色提取,基于MLP自动颜色提取功能

news2025/2/6 8:00:10

1.前言

在实际的图像处理中,经常会遇到彩色图像,使用彩色图像往往跟颜色识别有关系。但是使用RGB进行调参时又很难达到所需要的效果(异常区域过多不好处理)。
在Halcon中,halcon对颜色提取采用MLP(多层感知模型)的形式实现对图像颜色的识别和分类。

2.结论代码

read_image (Image, 'E:/UpperComputer/颜色提取/1.bmp')
*绘制所需要提取的区域颜色
gen_rectangle1 (ROI_0, 135.254, 399.168, 184.195, 417.796)
gen_rectangle1 (ROI_1, 186.525, 189.596, 244.789, 200.075)
gen_rectangle2 (ROI_2, 377.629, 292.054, rad(-21.818), 25.0824, 7.35622)
*将所绘制的区域联合成同一区域
union2 (ROI_0, ROI_2, RegionUnion)
union2 (RegionUnion, ROI_1, RegionUnion1)
*绘制背景区域
gen_rectangle1 (back1, 3.38358, -0.0446034, 403.07, 174.598)
*将所有区域存放在数组中
concat_obj (back1, RegionUnion1, Classes)
*创建MLP句柄。
create_class_mlp (3, 7, 2, 'softmax', 'normalization', 3, 42, MLPHandle)
*将区域数组添加到句柄中
add_samples_image_class_mlp (Image, Classes, MLPHandle)
*训练图像,根据训练区域的复杂度,需要一段时间
train_class_mlp (MLPHandle, 400, 0.5, 0.01, Error, ErrorLog)
*将句柄写入文件中
write_samples_class_mlp (MLPHandle, 'E:/UpperComputer/颜色提取/mlp.mlp')
*从文件中读出句柄
read_samples_class_mlp (MLPHandle,  'E:/UpperComputer/颜色提取/mlp.mlp')
*对图像进行分类
classify_image_class_mlp (Image, ClassRegions, MLPHandle, 0.5)
*复制对应数组图像
copy_obj (ClassRegions, ObjectsSelected, 2, 1)
*对结果进行显示
connection (ObjectsSelected, ConnectedRegions)
gen_contour_region_xld (ConnectedRegions, Contours, 'border')
area_center (ConnectedRegions, Area, Row, Column)
gen_cross_contour_xld (Cross, Row, Column, 100, 0)
dev_display (Image)
dev_display (Contours)
dev_display (Cross)

3.halcon案例

(1)案例问题

halcon对MLP的颜色提取提供了一个极佳的案例:color_pieces.hdv但是在实际的案例分析时发现,案例中对特殊情况的同颜色物体的识别效果不佳。
在这里插入图片描述

(2)案例优化

我们需要对相同颜色的区域进行融合。
在这里插入图片描述
这样子我们就可以避免出现对同颜色的部分,因为打光不均匀造成颜色识别异常的情况。

*读取图像
read_image (Image, 'E:/UpperComputer/颜色提取/1.bmp')
*绘制所需要提取的区域颜色
gen_rectangle1 (ROI_0, 135.254, 399.168, 184.195, 417.796)
gen_rectangle1 (ROI_1, 186.525, 189.596, 244.789, 200.075)
gen_rectangle2 (ROI_2, 377.629, 292.054, rad(-21.818), 25.0824, 7.35622)
*将所绘制的区域联合成同一区域
union2 (ROI_0, ROI_2, RegionUnion)
union2 (RegionUnion, ROI_1, RegionUnion1)
*绘制背景区域
gen_rectangle1 (back1, 3.38358, -0.0446034, 403.07, 174.598)
*将所有区域存放在数组中
concat_obj (back1, RegionUnion1, Classes)
*创建MLP句柄。
create_class_mlp (3, 7, 2, 'softmax', 'normalization', 3, 42, MLPHandle)
*将区域数组添加到句柄中
add_samples_image_class_mlp (Image, Classes, MLPHandle)
*训练图像,根据训练区域的复杂度,需要一段时间
train_class_mlp (MLPHandle, 400, 0.5, 0.01, Error, ErrorLog)
*将句柄写入文件中
write_samples_class_mlp (MLPHandle, 'E:/UpperComputer/颜色提取/mlp.mlp')
*从文件中读出句柄
read_samples_class_mlp (MLPHandle,  'E:/UpperComputer/颜色提取/mlp.mlp')
*对图像进行分类
classify_image_class_mlp (Image, ClassRegions, MLPHandle, 0.5)
*复制对应数组图像
copy_obj (ClassRegions, ObjectsSelected, 2, 1)
*对结果进行显示
connection (ObjectsSelected, ConnectedRegions)
gen_contour_region_xld (ConnectedRegions, Contours, 'border')
area_center (ConnectedRegions, Area, Row, Column)
gen_cross_contour_xld (Cross, Row, Column, 100, 0)
dev_display (Image)
dev_display (Contours)
dev_display (Cross)

最终训练结果
在这里插入图片描述

4.实例分析-金属表面涂胶检测

(1)参考图像

在项目上由于多种原因。例如金属板来料不稳定,材质表面处理差,打光型号不好等很多情况造成图片效果不过。例如下图中需要把绿色胶完全提取出,并计算面积与是否断胶情况。对于使用RGB调参对来料的稳定性要求过高。这个时候我们可以使用MLP进行对胶颜色的提取
在这里插入图片描述

(2)编写的程序

read_image (Image, 'E:/UpperComputer/颜色提取/16_06_59_48.jpg')
gen_rectangle1 (ROI_0, 1189.38, 885.171, 1526.06, 923.636)
gen_rectangle1 (ROI_1, 1747.25, 2.78031, 1762.57, 523.197)
gen_rectangle1 (ROI_2, 569.788, 885.932, 733.413, 905.169)

union2 (ROI_0, ROI_1, RegionUnion)
union2 (RegionUnion, ROI_2, RegionUnion2)
gen_rectangle1 (ROI_back, 84.3468, 975.379, 710.018, 1927.27)


concat_obj (ROI_back, RegionUnion2, Classes)
create_class_mlp (3, 7,2, 'softmax', 'normalization', 3, 42, MLPHandle)
add_samples_image_class_mlp (Image, Classes, MLPHandle)
train_class_mlp (MLPHandle, 400, 0.5, 0.01, Error, ErrorLog)
classify_image_class_mlp (Image, ClassRegions, MLPHandle, 0.5)
copy_obj (ClassRegions, ObjectsSelected, 2, 1)
connection (ObjectsSelected, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 906015, 1.71805e+06)
dilation_circle (SelectedRegions, RegionDilation, 3.5)
gen_contour_region_xld (RegionDilation, Contours, 'border')
dev_display (Image)
dev_display (Contours)

(3)解析

第一:先对图像明显的区域进行需要区分的颜色进行选取,还有对背景选取。对于背景的选取,应尽可能的包含常见的元素,有助于大量提升背景的识别效率

read_image (Image, 'E:/UpperComputer/颜色提取/16_06_59_48.jpg')
gen_rectangle1 (ROI_0, 1189.38, 885.171, 1526.06, 923.636)
gen_rectangle1 (ROI_1, 1747.25, 2.78031, 1762.57, 523.197)
gen_rectangle1 (ROI_2, 569.788, 885.932, 733.413, 905.169)

union2 (ROI_0, ROI_1, RegionUnion)
union2 (RegionUnion, ROI_2, RegionUnion2)
gen_rectangle1 (ROI_back, 84.3468, 975.379, 710.018, 1927.27)


concat_obj (ROI_back, RegionUnion2, Classes)

第二:创建和训练MLP模型
创建模型时,对create_class_mlp应确定有多少参数。算子中的2代表具有2种需要被区分的颜色。如果我们训练里面需要被区分的颜色有多种,那么我们需要修改指定的参数。

create_class_mlp (3, 7,2, 'softmax', 'normalization', 3, 42, MLPHandle)
add_samples_image_class_mlp (Image, Classes, MLPHandle)
train_class_mlp (MLPHandle, 400, 0.5, 0.01, Error, ErrorLog)

其次对于不同的图像中出现找不到的区域,只需要调用一下算子,重复前面流程将颜色添加到MLP的句柄中即可

add_samples_image_class_mlp (Image, Classes, MLPHandle)

第三:结果显示。

classify_image_class_mlp (Image, ClassRegions, MLPHandle, 0.5)
copy_obj (ClassRegions, ObjectsSelected, 2, 1)
connection (ObjectsSelected, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 906015, 1.71805e+06)
dilation_circle (SelectedRegions, RegionDilation, 3.5)
gen_contour_region_xld (RegionDilation, Contours, 'border')
dev_display (Image)
dev_display (Contours)

将所需要输出的区域进行复制一份即可。需要注意的时查看对应的区域数组。并选取合适的区域进行复制

copy_obj (ClassRegions, ObjectsSelected, 2, 1)

第三:最终结果。
绿色的胶条可以轻松被提取出。后续进行对胶条进行Blob分析即可得出结果。
在这里插入图片描述

结论

MLP模型的训练和使用过程非常简单。并且效果显著,主要针对具有物体颜色需要被区分,或者由于打光效果或者来料不稳定造成的图像异常的情况,并且可以通过颜色快速提取特征的方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1336784.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

swagger1.2 apiPost工具测试接口没有问题,换成swagger 接口调测时报错 Required request body is missing

把 请求方法由get换成post GetMapping换成 PostMapping 原因apiPost自动把请求json参数封装到请求体里了, 但swagger没有封装,通过networker可以看到载荷里并没有任何东西

nginx记录配置文件

查询当前域名配置所在的nginx文件路径 1:nginx -t 2:cd /usr/local/nginx/conf (如果没看到conf文件,那就根据不同公司定制的规则,这里是才conf下的vhost/) 3:cat xxx.conf 能看到 包应该要放的位置 4:把包解压到…

W6100-EVB-Pico评估版介绍

文章目录 1 简介2 硬件资源2.1 硬件规格2.2 引脚定义2.3 工作条件 3 参考资料3.1 Datasheet3.2 原理图3.3 尺寸图(尺寸:mm)3.4 参考例程 4 硬件协议栈优势 1 简介 W6100-EVB-Pico是一款基于树莓派RP2040和全硬件TCP/IP协议栈以太网芯片W6100的…

Android studio 多界面的跳转和返回

一、新建一个Empty Activity项目&#xff1a; 二、修改activity_main.xml布局文件&#xff1a; <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xmlns:android"http://schemas.android.com/a…

c# OpenCvSharp透视矫正六步实现透视矫正(八)

透视矫正,引用文档拍照扫描&#xff0c;相片矫正这块。 读取图像Cv2.ImRead();预处理&#xff08;灰度化&#xff0c;高斯滤波、边缘检测&#xff09;轮廓检测&#xff08;获取到最大轮廓&#xff09;获取最大面积轮廓的四个顶点标识最小矩形坐标透视矫正显示 完整代码 // 1、…

【数据库优化汇总】使用这8招后,数据库查询从191s优化到30ms!

为什么数据库会慢&#xff1f; 慢的本质 查找的时间复杂度 查找算法 存储数据结构 存储数据结构 数据总量 数据拆分 高负载 CPU、磁盘繁忙 无论是关系型数据库还是NoSQL&#xff0c;任何存储系统决定于其查询性能的主要有三种&#xff1a; 查找的时间复杂度数据…

越南语翻译中文有什么特点,怎样翻译比较好?

近年来&#xff0c;随着中越经济贸易的日益频繁&#xff0c;语言交流已无法避免&#xff0c;越南语翻译的需求也持续增加。那么&#xff0c;越南语有何独特之处&#xff1f;越南语翻译成中文时&#xff0c;又该如何处理呢&#xff1f; 专业人士指出&#xff0c;在进行越南语翻译…

cefsharp120.1.110(cef120.1.10,Chromium120.0.6099.129)升级测试及其他H264版本

一、版本变化 v120.1.80–>v120.1.110 相对于120.1.80 更新了一个安全更新,针对Google 获悉存在针对 CVE-2023-7024 的漏洞。 说明:本版本暂时不支持264,其他H264版本参考119,116,115,114,111,110,109,107,100等版本 v109是支持win7/8/8.1最后一个版本(推荐v100版本) v…

鸿蒙4升级进展:共137款产品加入升级,Mate 20也能升级了

从华为官方发布的鸿蒙升级进展来看&#xff0c;2018年发布的Mate 20系列机型也开始了鸿蒙4系统升级的测试招募。 5年之期已到&#xff0c;再战5年不是梦想&#xff1f; 另外&#xff0c;从明年一季度的升级预告来看&#xff0c;春节前后升级的主要为穿戴手表产品。 目前&…

spring security oauth2搭建认证服务器

如图&#xff08;上面图片的代码在业务项目中&#xff09;&#xff0c;第一步在独立的业务项目中&#xff0c;先获取授权码&#xff08;也叫jsessionId&#xff09;、获取授权码的路径就是 /oauth2/authorize&#xff0c;这个路径是oauth2的框架中被OAuth2AuthorizationEndpoin…

YOLOv7训练数据报错

YOLOv7训练数据报错 错误提示1解决方案问题2解决方案成功运行 错误提示1 fatal: not a git repository (or any of the parent directories): .git Traceback (most recent call last):File "/home/ubuntu/code/yolov7-main/utils/google_utils.py", line 26, in att…

为什么说依赖抽象就变得更加灵活呢?举例

说依赖抽象变得更加灵活的主要原因在于它提供了更大的替换和扩展的空间。让我们通过一个简单的例子来说明&#xff1a; 考虑一个电商系统&#xff0c;其中有一个OrderProcessor类负责处理订单&#xff0c;它依赖于一个PaymentGateway用于处理支付。最初的设计可能如下所示&…

前端,build后index报错,noscript

解决方法&#xff1a; npx update-browserslist-dblatest

CSS、JavaScript实现进度条效果HTML

CSS、JavaScript实现进度条效果HTML 效果图 代码如下&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>ProgressBar</title><style>* {margin: 0;padding: 0;}body {position…

【HTML5】第2章 HTML5标签和属性

学习目标 掌握文本控制标签的用法&#xff0c;能够使用文本控制标签设置文本样式。 掌握图像标签的用法&#xff0c;能够使用图像标签在网页中嵌入图片。 掌握超链接标签的用法&#xff0c;能够使用超链接实现页面的跳转。 掌握列表标签的用法&#xff0c;能够使用列表标签设…

AMEYA360:思瑞浦发布全新并联基准芯片—:TPR43x系列产品

聚焦高性能模拟芯片和嵌入式处理器的半导体公司——思瑞浦(3PEAK, 股票代码&#xff1a;688536)推出全新并联基准芯片TPR433/TPR434。 TPR433/TPR434基于BCD工艺&#xff0c;电压精度0.5%25C&#xff0c;可广泛应用于电源、照明、工业设备等领域。 TPR433/434产品特性 *通过外部…

互联网加竞赛 YOLOv7 目标检测网络解读

文章目录 0 前言1 yolov7的整体结构2 关键点 - backbone关键点 - head3 训练4 使用效果5 最后 0 前言 世界变化太快&#xff0c;YOLOv6还没用熟YOLOv7就来了&#xff0c;如果有同学的毕设项目想用上最新的技术&#xff0c;不妨看看学长的这篇文章&#xff0c;学长带大家简单的…

右值引用和移动语义以及C++11新增的类功能

正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 右值引用和左值引用 传统的C语法中就有引用的语法&#xff0c;而C11中新增了的右值引用语法特…

移动端防截屏录屏技术在百度账户系统实践

作者 | Seven 导读 在移动端应用的开发过程中&#xff0c;保护用户隐私和应用内敏感信息安全是一个不可忽视的课题。随着诈骗手段的升级&#xff0c;“共享屏幕”被诈骗分子频频使用&#xff0c;因为密码被泄露而导致受害者财物受损的事情层出不穷。只要开启了“共享屏幕”–本…

vue3使用Cascader联级选择器的懒加载+回显

效果图 页面代码 // separator是改变文字链接的方式&#xff0c; <el-cascaderseparator"-"v-model"currentRegionList":props"DeptRegionList":options"getRegionList"change"handleRegionListFun"ref"deptRegio…