Discrete Time Signals and Systems

news2024/9/24 5:30:36

Discrete Time Signals and Systems

文章目录

  • Discrete Time Signals and Systems
    • Signal classification
    • basic signal
    • Operation on signal
    • System of discrete signal
      • Linear systems and nonlinear systems
      • Causal and non-causal Systems
      • Time-varying and time-invariant systems
      • static system and dynamic system
      • Stable and unstable systems
      • convolution
      • circular convolution
      • Stability of linear time-invariant systems
    • Fourier Series
      • Fourier Series basic concepts
      • Discrete time fouriew series (DTFS)
      • CTFS
    • Continuous time Fourier transform (CTFT)
      • Dirichlet's conditions
      • lecture(77)
      • lecture(78)
      • properties of CTFT
        • linearity
        • time shifting
        • time scaling
      • frequency shifting
      • time differenciation
      • frequency differenciation
      • convolution
      • Parseval's Theorem
    • Fourier transform of Periodic signal
    • Discrete time fouriew series (DTFT)
      • basic properties
      • DTFT for common signals
      • properties
        • linear
        • time shifting
        • frequency shifting
        • Frequency domain differential
    • Discrete Fourier Transform(DFT)
      • Calculation of DFT
        • Rotation matrix of inverse DFT transform(IDFT)
      • Properties of DFT
        • 1.linear
        • 2.circular convolution
        • 3.periodicity
        • 4.cyclic frequency shift
      • DTF calculates linear convolution and circular convolution
        • linear convilution
        • cyclical convolution
      • another way to calculate linear convolution
        • Overlap-Add
        • Overlap-Save
    • z-transformation
      • Basic concepts of z-transformation
      • region of convergence (ROC)
      • Properties of z-transformation
        • linear
        • time shifting
        • scaling
        • differential
        • convolution
        • initial value theorem
        • terminal value theorem
      • Inverse transformation of z-transform
        • long division method
        • partial fraction expansion method
        • Residue method
      • stability

Signal classification

  • Periodic and non-periodic
  • Odd and even signals
  • energy signal and power signal

basic signal

  • Impulse function
  • unit step function
  • Ramp function

Operation on signal

 

Periodic and Aperiodic Discrete-Time Sinusoids
x ( n ) = A c o s [ 2 π f 0 n ] = x ( n + N ) = A c o s [ 2 π f 0 ( n + N ) ] = A c o s [ 2 π f 0 n + 2 π f 0 N ] x(n)=Acos[2 \pi f_0 n]=x(n+N)=Acos[2 \pi f_0 (n+N)]=Acos[2 \pi f_0 n+2 \pi f_0 N] x(n)=Acos[2πf0n]=x(n+N)=Acos[2πf0(n+N)]=Acos[2πf0n+2πf0N]
2 π f 0 N = 2 π k 2\pi f_0 N =2 \pi k 2πf0N=2πk just f 0 = k N f_0 = \frac{k}{N} f0=Nk

n is integer: Periodic

n is not integer: Aperiodic

Periodic judgment of composite signals

  1. Find N for each signal

    if N 1 N 2 = r a t i o n a l   n u m b e r \frac{N_1}{N_2} = rational \ number N2N1=rational number it is Periodic

  2. Find the lowest common multiple($ LCM(N_1,N_2)$)

    Periodic is L C M ( N 1 , N 2 ) LCM(N_1,N_2) LCM(N1,N2)

Odd and even signals

odd: x 0 ( t ) = 1 2 [ x ( t ) − x ( − t ) ] x_0(t)=\frac{1}{2}[x(t)-x(-t)] x0(t)=21[x(t)x(t)]

even: x e ( t ) = 1 2 [ x ( t ) + x ( − t ) ] x_e(t) = \frac{1}{2}[x(t)+x(-t)] xe(t)=21[x(t)+x(t)]

x ( t ) = x 0 ( t ) + x e ( t ) x(t) = x_0(t) + x_e(t) x(t)=x0(t)+xe(t)

energy signal and power signal

energy: E = ∑ n = − ∞ ∞ ∣ x [ n ] ∣ 2 E=\sum_{n=-\infty}^{\infty}|x[n]|^2 E=n=x[n]2

power:

Periodic: P ∞ = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − ∞ + ∞ ∣ x [ n ] ∣ 2 P_\infty=\lim_{N\to\infty}\frac1{2N+1}\sum_{n=-\infty}^{+\infty}|x[n]|^2 P=limN2N+11n=+x[n]2

Aperiodic: P x = 1 N ∑ n = 0 N − 1 ∣ x [ n ] ∣ 2 P_x=\frac1{N}\sum_{n=0}^{N-1}|x[n]|^2 Px=N1n=0N1x[n]2

energy signal:energy is finite,power is zero

power signal:energy is infinite,power is finite

 

find the energy and power for

  • Impulse function
  • unit step function
  • Ramp function

 

  1. Time Shifting(left is +;right is -)
  2. Time-scale
  3. Time Reversal

 

System of discrete signal

  • Linear systems and nonlinear systems

  • Causal and Acausal Systems

  • Time-varying and time-invariant systems

  • static system and dynamic system

  • Stable and unstable systems

  • convolution

  • convolution sum

  • circular convolution

  • Stability of linear time-invariant systems

Linear systems and nonlinear systems

  • Linear systems satisfy uniformity and superposition
  • A system that satisfies uniformity and superposition is a linear system

image-20231222222522112

Must have: x ( n ) = y ( n ) = 0 x(n) = y(n) = 0 x(n)=y(n)=0

Four steps to solve problems:

  1. x1 to y1 = F(x1)
  2. x2 to y2 = F(x2)
  3. y3 = ay1 + by2
  4. F(ax1 +bx2) = y4

if y4 = y3 ,the system is linear

 

Causal and non-causal Systems

casual system: The output depends only on present and past signals

Acausal Systems:The output depends on at least one future input

eg:Y(n) = x(-n) is non-casual (at n = -1)

even and odd is non-casual

ps: anti-casual system: output only upon “only future input” for all time

 

Time-varying and time-invariant systems

Time-varying system(TVS):

y(n) = F[x(n)] = x(n)cos(2 w π w \pi wπn)

y(n,k) = F[x(n-k)] = x(n-k)cos(2 w π w \pi wπn)

y(n-k) ≠ \ne = y(n,k)

y(n) to y(n,k):only change n for x(n)

time-invariant systems :

y(n,k) = y(n-k)

eg:y(n-k) = sin (x(n-k))

y change n for all n

 

static system and dynamic system

static system (memory-less system):

output only depends on now input for all time

dynamic system:

output depends on past and/or future inputs

 

Stable and unstable systems

Stable system: BIBO

bounded input to bounded output

unstable systems:

bounded input to unbounded output

eg: y ( n ) = y 2 ( n − 1 ) + 2 δ ( n ) y(n)=y^2(n-1)+2\delta (n) y(n)=y2(n1)+2δ(n)

 

convolution

  • time-invariant systems

y ( n ) = ∑ k = − ∞ ∞ x ( k ) h ( n − k ) y(n)=\sum_{k=-\infty}^{\infty}x(k)h(n-k) y(n)=k=x(k)h(nk)

y ( n ) = x ( n ) ∗ h ( n ) y(n)=x(n)*h(n) y(n)=x(n)h(n)

  1. time reversal
  2. shifting of h(-k) to h(n-k)
  3. multiply x(k)h(n-k)
  4. Sum
  • linear convolution
  • circular convolution

matrix method:

x(n) = {1,2,3,4} h(n)={0,2,2,2}

length of x(n):4 samples;k

length of h(n):4 samples;m

length of y(n): = k + m - 1 = 4 + 4 - 1 = 7 samples

image-20231223180642723

 

circular convolution

x(n) = {2,1,2} h(n) = {1,2,3}

y ( n ) = ∑ k = − ∞ ∞ x ( k ) h ( n − k ) y(n)=\sum_{k=-\infty}^{\infty}x(k)h(n-k) y(n)=k=x(k)h(nk)

image-20231223181124148

 

Stability of linear time-invariant systems

S = ∑ k = − ∞ ∞ ∣ h ( n ) ∣ < ∞ S=\sum_{k=-\infty}^{\infty}|h(n)| < \infty S=k=h(n)<

it is stability

eg: h ( n ) = ( 0.8 ) n u ( n + 2 ) h(n) = (0.8)^n u(n+2) h(n)=(0.8)nu(n+2)

 

Fourier Series

  • Fourier Series basic concepts
  • Discrete time fouriew series (DTFS)

Fourier Series basic concepts

Condition for existence of Fourier Series

  1. Finite Number of maxima and minima over the time period
  2. Finite number of discontinuities over the time period T
  3. Signal should be absolutely integrable over the range of time period T

period function:

f ( x ) = a 0 + ∑ n = 1 ∞ ( a n c o s ( n w 0 t ) + b n s i n ( n w 0 t ) f(x)=a_0+\sum_{n=1}^\infty(a_ncos(nw_0t)+b_n sin(nw_0t) f(x)=a0+n=1(ancos(nw0t)+bnsin(nw0t)

a 0 = 1 T 1 ∫ 0 T 1 f ( t ) d t a_{0}=\frac{1}{T_{1}}\int_{0}^{T_1}f(t)dt a0=T110T1f(t)dt

a n = 2 T 1 ∫ 0 T 1 f ( t ) cos ⁡ n w 1 t d t a_{n}=\frac{2}{T_{1}}\int_{0}^{T_{1}}f(t)\cos nw_1tdt an=T120T1f(t)cosnw1tdt

b n = 2 T 1 ∫ 0 T 1 f ( t ) sin ⁡ n w 1 t d t b_{n}=\frac{2}{T_{1}}\int_{0}^{T_{1}}f(t)\sin nw_1tdt bn=T120T1f(t)sinnw1tdt

eg:image-20231223183235229

 

Discrete time fouriew series (DTFS)

x n = ∑ k = 0 N − 1 c ( k ) e J k 2 π N n x_n=\sum_{k=0}^{N-1}c(k)e^{Jk\frac{2\pi }{N}n} xn=k=0N1c(k)eJkN2πn

c ( k ) = 1 N ∑ n = 0 N − 1 x ( n ) e − J k 2 π N n c(k)=\frac{1}{N}\sum_{n=0}^{N-1}x(n)e^{-Jk\frac{2\pi}{N}n} c(k)=N1n=0N1x(n)eJkN2πn

 

CTFS

x ( w ) = ∫ − ∞ + ∞ x ( t ) e − J w t d t x(w)=\int_{-\infty}^{+\infty}x(t)e^{-Jwt}dt x(w)=+x(t)eJwtdt

Inverse transformation: x ( t ) = 1 2 π ∫ − ∞ + ∞ x ( w ) e j w t d w x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}x(w)e^{jwt}dw x(t)=2π1+x(w)ejwtdw

 

Continuous time Fourier transform (CTFT)

  • basic concept
  • fourier fransform
  • magnitude specturm
  • phase spectrum

properties of CTFT

  • linearity
  • time shifting
  • frequency shifting
  • time scaling
  • time differenciation
  • frequency differenciation
  • convolution

Parseval’s Theorem

  1. Any signal is built up addition of elementary signals which are at different frequencies.

  2. CTFT is used to transform the signal from time domain to frequency domain.

  3. With the help of CTFT,plot the amplitude and phase spectrum.

  4. CTFT can be efxpressed as:

    x ( w ) = ∫ − ∞ + ∞ x ( t ) e − J w t d t x(w)=\int_{-\infty}^{+\infty}x(t)e^{-Jwt}dt x(w)=+x(t)eJwtdt

    Inverse transformation: x ( t ) = 1 2 π ∫ − ∞ + ∞ x ( w ) e j w t d w x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}x(w)e^{jwt}dw x(t)=2π1+x(w)ejwtdw

 

Dirichlet’s conditions

  1. f(t) should be absolutely integrable.
  2. f(t) should have a finite number of maxima and minima over any finite interval.
  3. f(t) should have finite number of discontinues over any finite interval

These conditions are sufficient but not necessary Condition.

If the conditions are not met, there is not necessarily no Fourier transform.

 

lecture(77)

  • fourier fransform
  • magnitude specturm
  • phase spectrum

 

lecture(78)

Inverse transformation for function

important

 

properties of CTFT

linearity

F [ f ( t ) ] = F ( ω ) , F [ g ( t ) ] = G ( ω ) \mathscr{F}[f(t)]=F(\omega),\quad\mathscr{F}[g(t)]=G(\omega) F[f(t)]=F(ω),F[g(t)]=G(ω)

F [ α f ( t ) + β g ( t ) ] = α F ( ω ) + β G ( ω ) F − 1 [ α F ( ω ) + β G ( ω ) ] = α f ( t ) + β g ( t ) \begin{aligned}\mathscr{F}[\alpha f(t)+\beta g(t)]&=\alpha F(\omega)+\beta G(\omega)\\\mathscr{F}^{-1}[\alpha F(\omega)+\beta G(\omega)]&=\alpha f(t)+\beta g(t)\end{aligned} F[αf(t)+βg(t)]F1[αF(ω)+βG(ω)]=αF(ω)+βG(ω)=αf(t)+βg(t)

time shifting

F [ f ( t ) ] = F ( ω ) \mathcal{F}[f(t)]=F(\omega) F[f(t)]=F(ω)

F [ f ( t − t 0 ) ] = e − j ω t 0 F ( ω ) F − 1 [ F ( ω − ω 0 ) ] = e j ω 0 t f ( t ) \begin{aligned}\mathscr{F}[f(t-t_0)]&=e^{-j\omega t_0}F(\omega)\\\mathscr{F}^{-1}[F(\omega-\omega_0)]&=e^{j\omega_0t}f(t)\end{aligned} F[f(tt0)]F1[F(ωω0)]=et0F(ω)=ejω0tf(t)

time scaling

F [ f ( t ) ] = F ( ω ) \mathcal{F}[f(t)]=F(\omega) F[f(t)]=F(ω)

F [ f ( a t ) ] = 1 ∣ a ∣ F ( ω a ) \mathscr{F}[f(at)]=\frac{1}{|a|}F\left(\frac{\omega}{a}\right) F[f(at)]=a1F(aω)

frequency shifting

F [ f ( t ) ] = F ( ω ) \mathcal{F}[f(t)]=F(\omega) F[f(t)]=F(ω)

F [ f ( t ) e j w 0 t ] = F ( ω − ω 0 ) F − 1 [ f ( t ) e − j w 0 t ] = F ( ω + ω 0 ) \begin{aligned}\mathscr{F}[f(t)e^{jw_0t}]&=F(\omega - \omega_0)\\\mathscr{F}^{-1}[f(t)e^{-jw_0t}]&=F(\omega + \omega_0)\end{aligned} F[f(t)ejw0t]F1[f(t)ejw0t]=F(ωω0)=F(ω+ω0)

time differenciation

F [ f ( t ) ] = F ( ω ) \mathcal{F}[f(t)]=F(\omega) F[f(t)]=F(ω)

F [ d n f ( t ) d t n ] = ( j ω ) n F ( ω ) F − 1 [ d n F ( ω ) d ω n ] = ( − j t ) n f ( t ) \begin{gathered} \mathscr{F}\left[\frac{d^{n}f(t)}{dt^{n}}\right]=(j\omega)^{n}F(\omega) \\ \mathscr{F}^{-1}\left[\frac{d^{n}F(\omega)}{d\omega^{n}}\right]=(-jt)^{n}f(t) \end{gathered} F[dtndnf(t)]=()nF(ω)F1[dωndnF(ω)]=(jt)nf(t)

frequency differenciation

F [ f ( t ) ] = F ( ω ) \mathcal{F}[f(t)]=F(\omega) F[f(t)]=F(ω)

F [ ( − j t ) n f ( t ) ] = d n F ( w ) d w n \mathscr{F} [(-jt)^{n}f(t)]= \frac{d^{n}F(w)}{dw^{n}} F[(jt)nf(t)]=dwndnF(w)

F [ t f ( t ) ] = j d F ( w ) d w \mathscr{F} [tf(t)]= j\frac{dF(w)}{dw} F[tf(t)]=jdwdF(w)

convolution

F [ f ( t ) ] = F ( ω ) , F [ g ( t ) ] = G ( ω ) \mathscr{F}[f(t)]=F(\omega),\quad\mathscr{F}[g(t)]=G(\omega) F[f(t)]=F(ω),F[g(t)]=G(ω)

F [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( ω ) ⋅ F 2 ( ω ) \mathscr{F}[f_1(t) *f_2(t)]=F_1(\omega)·F_2(\omega) F[f1(t)f2(t)]=F1(ω)F2(ω)

F [ f 1 ( t ) ⋅ f 2 ( t ) ] = 1 2 π F 1 ( ω ) ∗ F 2 ( ω ) \mathscr{F}[f_1(t) ·f_2(t)]=\frac{1}{2\pi}F_1(\omega)*F_2(\omega) F[f1(t)f2(t)]=2π1F1(ω)F2(ω)

 

Parseval’s Theorem

if x(t) CTFT to x ( w ) x(w) x(w) or x ( f ) x(f) x(f)

E = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t = ∫ − ∞ ∞ ∣ x ( f ) ∣ 2 d f E=\int_{-\infty}^{\infty}|x(t)|^{2}dt=\int_{-\infty}^{\infty}|x(f)|^{2}df E=x(t)2dt=x(f)2df

 

Fourier transform of Periodic signal

  • spectrum of e j ω 0 t e^{j\omega_0t } ejω0t and e − j ω 0 t e^{- j\omega_0t } ejω0t
  • spectrum of s i n w t sinwt sinwt and c o s w t coswt coswt
  • Spectrum of a general periodic signal

spectrum of e j ω 0 t e^{j\omega_0t } ejω0t and e − j ω 0 t e^{- j\omega_0t } ejω0t

F [ e j ω 0 t ] = 2 π δ ( ω − ω 0 ) F [ e − j ω 0 t ] = 2 π δ ( ω + ω 0 ) \begin{aligned}\mathscr{F}[e^{j\omega_0t}]&=2\pi\delta(\omega-\omega_0)\\\mathscr{F}[e^{-j\omega_0t}]&=2\pi\delta(\omega+\omega_0)\end{aligned} F[ejω0t]F[ejω0t]=2πδ(ωω0)=2πδ(ω+ω0)

 

spectrum of s i n w 0 t sinw_0t sinw0t and c o s w 0 t cosw_0t cosw0t

F [ cos ⁡ ( ω 0 t ) ] = F [ e j ω 0 t + e − j ω 0 t 2 ] = π [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ] F [ sin ⁡ ( ω 0 t ) ] = F [ e j ω 0 t − e − j ω 0 t 2 j ] = j π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] \begin{gathered} \mathscr{F}[\cos(\omega_{0}t)]=\mathscr{F}[\frac{e^{j\omega_{0}t}+e^{-j\omega_{0}t}}{2}]=\pi[\delta(\omega-\omega_{0})+\delta(\omega+\omega_{0})] \\ \mathscr{F}[\sin(\omega_{0}t)]=\mathscr{F}[\frac{e^{j\omega_{0}t}-e^{-j\omega_{0}t}}{2j}]=j\pi[\delta(\omega+\omega_{0})-\delta(\omega-\omega_{0})] \end{gathered} F[cos(ω0t)]=F[2ejω0t+ejω0t]=π[δ(ωω0)+δ(ω+ω0)]F[sin(ω0t)]=F[2jejω0tejω0t]=[δ(ω+ω0)δ(ωω0)]

 

Spectrum of a general periodic signal

f ( t ) = ∑ n = − ∞ ∞ F ( n w 0 ) e j n w 0 t f(t)=\sum_{n=-\infty}^{\infty}F(nw_0)e^{jnw_0 t} f(t)=n=F(nw0)ejnw0t

F ( w ) = F [ f ( t ) ] = 2 π ∑ n = − ∞ ∞ F ( n w 0 ) δ ( ω − n ω 0 ) F(w) = \mathscr{F}[f(t)] = 2\pi \sum_{n=-\infty}^{\infty}F(nw_0)\delta(\omega-n\omega_{0}) F(w)=F[f(t)]=2πn=F(nw0)δ(ωnω0)

F ( n w 1 ) = 1 T ∫ 0 T f ( t ) e − j n w 0 t d t F(nw_1) = \frac{1}{T}\int_{0}^{T} f(t)e^{-jnw_0t}dt F(nw1)=T10Tf(t)ejnw0tdt

 

Discrete time fouriew series (DTFT)

  • basic properties
  • DTFT for common signals

basic properties

DTFT: X ( e j ω ) = ∑ n = − ∞ + ∞ x [ n ] e − j ω n X\left(e^{j\omega}\right)=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n} X(e)=n=+x[n]ejωn

Inverse transform of DTFT: x [ n ] = 1 2 π ∫ 2 π X ( e j ω ) e j ω n d ω x\left[n\right]=\frac1{2\pi}\int_{2\pi}X(e^{j\omega})e^{j\omega n}d\omega x[n]=2π12πX(e)ejωndω

DTFT for common signals

x ( n ) = a n u ( n ) ; ∣ a ∣ < 1 x(n) = a^n u(n);|a|<1 x(n)=anu(n);a<1

DTFT [X(n)] = ∑ n = − ∞ ∞ x ( n ) e − j w n = ∑ n = 0 + ∞ a n e − j w n = ∑ n = 0 + ∞ ( a ⋅ e − j w ) n = 1 1 − a e − j w = 1 1 − a ( c o s w − j s i n w ) = 1 ( 1 − a c o s w ) + j a s i n w \begin{aligned}\text{DTFT [X(n)]}&=\sum_{n=-\infty}^{\infty}x({n})e^{-jwn}\\&=\sum_{n=0}^{+\infty}a^ne^{-jwn}\\&=\sum_{n=0}^{+\infty}(a\cdot e^{-jw})^n\\&=\frac1{1-ae^{-jw}} \\&=\frac{1}{1-a(cosw-jsinw)} \\&=\frac{1}{(1-acosw)+jasinw}\end{aligned} DTFT [X(n)]=n=x(n)ejwn=n=0+anejwn=n=0+(aejw)n=1aejw1=1a(coswjsinw)1=(1acosw)+jasinw1

magnitude:

∣ x ( e j w ) ∣ = 1 ( 1 − a c o s w ) 2 + ( a s i n w ) 2 = 1 1 + a 2 − 2 a c o s w |x(e^{jw})| = \frac{1}{\sqrt{(1-acosw)^2}+(asinw)^2 }=\frac{1}{\sqrt{1+a^2-2acosw} } x(ejw)=(1acosw)2 +(asinw)21=1+a22acosw 1

phase:

∠ x ( e j w ) = − a r c t a n a s i n w 1 − a c o s w \angle x(e^{jw}) = -arctan\frac{asinw}{1-acosw} x(ejw)=arctan1acoswasinw

eg:x(n) = {-4,3,-2,3,-4}

find:(1). x ( e j 0 ) x(e^{j0}) x(ej0) (2). x ( e j w ) x(e^{jw}) x(ejw) (3). ∫ π − π x ( e j w ) d w \int_{\pi }^{-\pi} x(e^ {jw} )dw ππx(ejw)dw

 

properties

linear

a x 1 [ n ] + b x 2 [ n ] ↔ a X 1 ( e j ω ) + b X 2 ( e j ω ) ax_1\left[n\right]+bx_2\left[n\right]\leftrightarrow aX_1(e^{j\omega})+bX_2(e^{j\omega}) ax1[n]+bx2[n]aX1(e)+bX2(e)

time shifting

x ( n ) ↔ x ( e j w ) x(n) \leftrightarrow x(e^{jw}) x(n)x(ejw)

x ( n − n 0 ) ↔ x ( e j w ) ⋅ e − j w n 0 x( n - n_0) \leftrightarrow x(e^{jw})·e^{-jwn_0} x(nn0)x(ejw)ejwn0

frequency shifting

x ( n ) ↔ x ( e j w ) x(n) \leftrightarrow x(e^{jw}) x(n)x(ejw)

x ( n ) ⋅ e − j w n 0 ↔ x ( e j ( w − w 0 ) ) x(n)·e^{-jwn_0} \leftrightarrow x(e^{j(w-w_0)}) x(n)ejwn0x(ej(ww0))

Frequency domain differential

x ( n ) ↔ x ( e j w ) x(n) \leftrightarrow x(e^{jw}) x(n)x(ejw)

n x ( n ) ↔ j d x ( e j w ) d w n x(n) \leftrightarrow j \frac{dx(e^{jw})}{dw} nx(n)jdwdx(ejw)

 

eg:

1. y ( n ) − A y ( n − 1 ) = x ( n ) ; ∣ A ∣ < 1 y(n) - Ay(n-1) = x(n);|A|<1 y(n)Ay(n1)=x(n);A<1

2. y ( n ) − 3 4 y ( n − 1 ) + 1 8 y ( n − 2 ) = 2 x ( n ) y(n) - \frac{3}{4}y(n-1)+\frac{1}{8}y(n-2)=2x(n) y(n)43y(n1)+81y(n2)=2x(n)

3. x ( e j w ) = e − j w x(e^{jw})=e^{-jw} x(ejw)=ejw for − π ≤ w ≤ π -\pi \le w \le \pi πwπ

4.find convolution x ( n ) = 1 2 n u ( n ) x(n) = \frac{1}{2}^n u(n) x(n)=21nu(n) and x ( n ) = 1 3 n u ( n ) x(n) = \frac{1}{3}^n u(n) x(n)=31nu(n)

 

Discrete Fourier Transform(DFT)

DFT is equally spaced sampling of DTFT

DFT: x ( n ) —— > x ( k ) x(n) ——> x(k) x(n)——>x(k)

x ( k ) = ∑ n = 0 N − 1 x ( n ) e − j 2 π k N n ; k = 0 , 1 , 2 , 3 , . . . , N − 1 x(k) = \sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi k}{N}n};k=0,1,2,3,...,N-1 x(k)=n=0N1x(n)ejN2πkn;k=0,1,2,3,...,N1

making W N = e − j 2 π N W_N = e^{-j\frac{2\pi}{N}} WN=ejN2π

x ( k ) = ∑ n = 0 N − 1 x ( n ) W N k n x(k) = \sum_{n=0}^{N-1}x(n)W_N^{kn} x(k)=n=0N1x(n)WNkn

 

Calculation of DFT

eg: x ( k ) = ∑ n = 0 4 − 1 x ( n ) e − j 2 π k 4 n x(k) = \sum_{n=0}^{4-1}x(n)e^{-j\frac{2\pi k}{4}n} x(k)=n=041x(n)ej42πkn

1. x ( k ) = ∑ n = 0 N − 1 x ( n ) e − j 2 π k N n ; k = 0 , 1 , 2 , 3 , . . . , N − 1 x(k) = \sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi k}{N}n};k=0,1,2,3,...,N-1 x(k)=n=0N1x(n)ejN2πkn;k=0,1,2,3,...,N1

2.matrix method

image-20231223221845915

image-20231224153828648
Rotation matrix of inverse DFT transform(IDFT)

image-20231224153845233

 

Properties of DFT

1.linear

X 1 ( k ) = D F T [ x 1 ( n ) ] X_1(k)=DFT[x_1(n)] X1(k)=DFT[x1(n)]

X 2 ( k ) = D F T [ x 2 ( n ) ] X_2(k)=DFT[x_2(n)] X2(k)=DFT[x2(n)]

D F T [ a x 1 ( n ) + b x 2 ( n ) ] = a X 1 ( k ) + b X 2 ( k ) DFT[ax_1(n)+bx_2(n)]=aX_1(k)+bX_2(k) DFT[ax1(n)+bx2(n)]=aX1(k)+bX2(k)

2.circular convolution

DFT: x [ n ] ⊛ h [ n ] ⇔ X [ k ] ⋅ H [ k ] x[n]\circledast h[n]\Leftrightarrow X[k]·H[k] x[n]h[n]X[k]H[k]

DFT: x [ n ] ⋅ h [ n ] ⇔ X [ k ] ⊛ H [ k ] x[n]· h[n]\Leftrightarrow X[k]\circledast H[k] x[n]h[n]X[k]H[k]

3.periodicity

D F T [ x ( n ) ] = x ( k ) DFT[x(n)] = x(k) DFT[x(n)]=x(k)

x ( n + N ) = x ( n ) x(n+N) = x(n) x(n+N)=x(n);for all n

x ( k + N ) = x ( k ) x(k+N) = x(k) x(k+N)=x(k);for all k

4.cyclic frequency shift

D F T [ x ( n ) e j 2 π N l n ] = x ( ( k − l ) ) N DFT[x(n)e^{j\frac{2\pi}{N}ln}]=x((k-l))_N DFT[x(n)ejN2πln]=x((kl))N

(( )) is cyclic frequency

 

DTF calculates linear convolution and circular convolution

linear convilution

[ y ( n ) = x ( n ) ∗ h ( n ) ] [y(n) = x(n)*h(n)] [y(n)=x(n)h(n)]

then the length of x(n) is L,and h(n) is M

the length of linear convolution: N = L + M -1

  1. filling the length of x(n) and h(n) to N (add 0)
  2. calculates DTF[x(n)] and DTF[h(n)]
  3. then$ y(k) = x(k)·h(k)$
  4. calculate I D F T [ Y ( k ) ] = y ( n ) IDFT[Y(k)] = y(n) IDFT[Y(k)]=y(n)

 

cyclical convolution

[ y ( n ) = x ( n ) ⊛ h ( n ) ] [y(n) = x(n)\circledast h(n)] [y(n)=x(n)h(n)]

then the length of x(n) is L,and h(n) is M(add 0)

the length of cyclical convolution is :N = max(L,M)

  1. filling the length of x(n) and h(n) to N
  2. calculates DTF[x(n)] and DTF[h(n)]
  3. then y ( k ) = x ( k ) ⋅ h ( k ) y(k) = x(k)·h(k) y(k)=x(k)h(k)
  4. calculate I D F T [ Y ( k ) ] = y ( n ) IDFT[Y(k)] = y(n) IDFT[Y(k)]=y(n)

 

another way to calculate linear convolution

  • Overlap-Add and Overlap-Save
Overlap-Add

then the length of x k ( n ) x_k(n) xk(n) ( x k ( n ) x_k(n) xk(n) is not x ( n ) x(n) x(n)) is L,and h(n) is M

the length of convolution is :N = L + M - 1 (the size of N is depend on you)

eg: x ( n ) = { 3 , − 1 , 0 , 1 , 3 , 2 , 0 , 1 , 2 , 1 } x(n) = \{ 3,-1,0,1,3,2,0,1,2,1\} x(n)={3,1,0,1,3,2,0,1,2,1} h ( n ) = { 1 , 1 , 1 } h(n) = \{ 1,1,1\} h(n)={1,1,1}

1.we take N = 6,then 6= L + 3 - 1;so L = 4.

x 1 ( n ) = { 0 , 0 , 3 , − 1 , 0 , 1 } x_1(n) = \{ 0,0,3,-1,0,1 \} x1(n)={0,0,3,1,0,1}

x 2 ( n ) = { 0 , 1 , 3 , 2 , 0 , 1 } x_2(n) = \{ 0,1,3,2 ,0,1\} x2(n)={0,1,3,2,0,1}

x 3 ( n ) = { 0 , 1 , 2 , 1 , 0 , 0 } x_3(n) = \{ 0,1,2,1,0,0 \} x3(n)={0,1,2,1,0,0}

h ( n ) = { 1 , 1 , 1 , 0 , 0 , 0 } h(n) = \{1,1,1,0,0,0\} h(n)={1,1,1,0,0,0}

2.calculate

x 1 ( n ) ⊛ h ( n ) = { 1 , 1 , 3 , 2 , 2 , 0 } x_1(n)\circledast h(n) =\{1,1,3,2,2,0\} x1(n)h(n)={1,1,3,2,2,0}

x 2 ( n ) ⊛ h ( n ) = { 1 , 2 , 4 , 6 , 5 , 3 } x_2(n)\circledast h(n)=\{1,2,4,6,5,3\} x2(n)h(n)={1,2,4,6,5,3}

x 3 ( n ) ⊛ h ( n ) = { 0 , 1 , 3 , 4 , 3 , 1 } x_3(n)\circledast h(n) =\{0,1,3,4,3,1\} x3(n)h(n)={0,1,3,4,3,1}

3.Remove first (M-1) points ,Concatenate all results

the result is { 3 , 2 , 2 , 0 , 4 , 6 , 5 , 3 , 3 , 4 , 3 , 1 } \{3,2,2,0,4,6,5,3,3,4,3,1\} {3,2,2,0,4,6,5,3,3,4,3,1}

 

Overlap-Save

then the length of x k ( n ) x_k(n) xk(n) ( x k ( n ) x_k(n) xk(n) is not x ( n ) x(n) x(n)) is L,and h(n) is M

the length of convolution is :N = L + M - 1 (the size of N is depend on you)

eg: x ( n ) = { 3 , − 1 , 0 , 1 , 3 , 2 , 0 , 1 , 2 , 1 } x(n) = \{ 3,-1,0,1,3,2,0,1,2,1\} x(n)={3,1,0,1,3,2,0,1,2,1} h ( n ) = { 1 , 1 , 1 } h(n) = \{ 1,1,1\} h(n)={1,1,1}

1.we take N = 5,then 5 = L + 3 - 1;so L = 3.

x 1 ( n ) = { 0 , 0 , 3 , − 1 , 0 } x_1(n) = \{ 0,0,3,-1,0 \} x1(n)={0,0,3,1,0}

x 2 ( n ) = { − 1 , 0 , 1 , 3 , 2 } x_2(n) = \{ -1,0,1,3,2 \} x2(n)={1,0,1,3,2}

x 3 ( n ) = { 3 , 2 , 0 , 1 , 2 } x_3(n) = \{ 3,2,0,1,2 \} x3(n)={3,2,0,1,2}

x 4 ( n ) = { 1 , 2 , 1 , 0 , 0 } x_4(n) = \{ 1,2,1,0,0 \} x4(n)={1,2,1,0,0}

h ( n ) = { 1 , 1 , 1 , 0 , 0 } h(n) = \{1,1,1,0,0\} h(n)={1,1,1,0,0}

2.calculate

x 1 ( n ) ⊛ h ( n ) = { − 1 , 0 , 3 , 2 , 2 } x_1(n)\circledast h(n) =\{-1,0,3,2,2\} x1(n)h(n)={1,0,3,2,2}

x 2 ( n ) ⊛ h ( n ) = { 4 , 1 , 0 , 4 , 6 } x_2(n)\circledast h(n)=\{4,1,0,4,6\} x2(n)h(n)={4,1,0,4,6}

x 3 ( n ) ⊛ h ( n ) = { 6 , 7 , 5 , 3 , 3 } x_3(n)\circledast h(n) =\{6,7,5,3,3\} x3(n)h(n)={6,7,5,3,3}

x 4 ( n ) ⊛ h ( n ) = { 1 , 3 , 4 , 3 , 1 } x_4(n)\circledast h(n) =\{1,3,4,3,1\} x4(n)h(n)={1,3,4,3,1}

3.Remove first (M-1) points ,Concatenate all results

the result is { 3 , 2 , 2 , 0 , 4 , 6 , 5 , 3 , 3 , 4 , 3 , 1 } \{3,2,2,0,4,6,5,3,3,4,3,1\} {3,2,2,0,4,6,5,3,3,4,3,1}

 

 

z-transformation

  • Basic concepts of z-transformation
  • ROC
  • Properties of z-transformation
  • Inverse transformation of z-transform
  • stable

Basic concepts of z-transformation

  • Bilateral Z Transform

  • Unilateral Z Transform

Bilateral Z Transform:

X ( Z ) = Z { x [ n ] } = ∑ n = − ∞ + ∞ x [ n ] Z − n , Z ∈ R x X(Z)=Z\left\{x[n]\right\}=\sum_{n=-\infty}^{+\infty}x\left[n\right]Z^{-n}\text{,}Z\in Rx X(Z)=Z{x[n]}=n=+x[n]Zn,ZRx

Unilateral Z Transform:

X ( Z ) = Z { x [ n ] } = ∑ n = 0 + ∞ x [ n ] Z − n , Z ∈ R x X(Z)=Z\left\{x[n]\right\}=\sum_{n=0}^{+\infty}x\left[n\right]Z^{-n},Z\in Rx X(Z)=Z{x[n]}=n=0+x[n]Zn,ZRx

 

region of convergence (ROC)

making z = r ⋅ e j w z = r·e^{jw} z=rejw

x ( z ) = ∑ n = − ∞ ∞ x ( n ) z − n = ∑ n = − ∞ ∞ x ( n ) r − n e − j w n x(z) = \sum_{n=-\infty}^{\infty}x(n)z^{-n} \\=\sum_{n=-\infty}^{\infty}x(n)r^{-n}e^{-jwn} x(z)=n=x(n)zn=n=x(n)rnejwn

if r = 1 r = 1 r=1,then x ( z ) = D T F T x(z) = DTFT x(z)=DTFT

eg: x ( n ) = { 1 , 2 , 3 , 4 , 0 , 1 } x(n) = \{1,2,3,4,0,1 \} x(n)={1,2,3,4,0,1}

x ( z ) = ∑ n = − ∞ ∞ x ( n ) z − n = ∑ n = 0 5 x ( n ) z − n = x ( 0 ) z − 0 + x ( 1 ) z − 1 + x ( 2 ) z − 2 + x ( 3 ) z − 3 + x ( 4 ) z − 4 + x ( 5 ) z − 5 = 1 + 2 z − 1 + 3 z − 2 + 4 z − 3 + z − 5 x(z) = \sum_{n=-\infty}^{\infty}x(n)z^{-n}=\sum_{n=0}^{5}x(n)z^{-n}=x(0)z^{-0}+x(1)z^{-1}+x(2)z^{-2}+x(3)z^{-3}+x(4)z^{-4}+x(5)z^{-5}\\=1+2z^{-1}+3z^{-2}+4z^{-3}+z^{-5} x(z)=n=x(n)zn=n=05x(n)zn=x(0)z0+x(1)z1+x(2)z2+x(3)z3+x(4)z4+x(5)z5=1+2z1+3z2+4z3+z5

ROC:exist entire z-plane except z = 0 z = 0 z=0

using plot:

eg: x ( n ) = { a n    ; n   ≥ 0 0    ; n   < 0 x(n)=\left\{\begin{matrix} a^n\;;n\ \ge 0 \\ 0\;;n\ < 0 \end{matrix}\right. x(n)={an;n 00;n <0

x ( z ) = ∑ n = 0 + ∞ ( a z − 1 ) n = 1 1 − a z − 1 = z z − a x(z) = \sum_{n=0}^{+\infty}(az^{-1})^{n}\\=\frac{1}{1-az^{-1}}=\frac{z}{z-a} x(z)=n=0+(az1)n=1az11=zaz

needing that : ∣ a z − 1 ∣ < 1 |az^{-1}|<1 az1<1 just ROC: ∣ z ∣ > ∣ a ∣ |z|> |a| z>a

eg : x ( n ) = − a n u ( − n − 1 ) x(n) = -a^nu(-n-1) x(n)=anu(n1)

ROC: ∣ a − 1 ∣ < 1 |a^{-1}|<1 a1<1 is just ∣ z ∣ < ∣ a ∣ |z| < |a| z<a

 

Properties of z-transformation

  • linear
  • time shifting
  • scaling
  • differential
  • convolution
  • initial value theorem
  • terminal value theorem
linear

x 1 ( n ) ⟶ x 1 ( z ) ; R O C 1 x_1(n) \longrightarrow x_1(z);ROC_1 x1(n)x1(z);ROC1

x 2 ( n ) ⟶ x 2 ( z ) ; R O C 2 x_2(n) \longrightarrow x_2(z);ROC_2 x2(n)x2(z);ROC2

a x 1 ( n ) + b x 2 ( n ) ⟶ a x 1 ( z ) + b x 2 ( z ) ; R O C : [ R O C 1 ∩ R O C 2 ] ax_1(n) + bx_2(n) \longrightarrow ax_1(z)+bx_2(z);\\ROC:[ROC_1\cap ROC_2] ax1(n)+bx2(n)ax1(z)+bx2(z);ROC:[ROC1ROC2]

time shifting

x ( n ) ⟶ x ( z ) x(n) \longrightarrow x(z) x(n)x(z)

x ( n − n 0 ) ⟶ x ( z ) z − n 0 x(n - n_0) \longrightarrow x(z)z^{-n_0} x(nn0)x(z)zn0

scaling

x ( n ) ⟶ x ( z ) ; R O C :    ∣ z ∣ > 1 x(n) \longrightarrow x(z);ROC: \;|z|>1 x(n)x(z);ROC:z>1

a n x ( n ) ⟶ x ( z a ) a^nx(n) \longrightarrow x(\frac{z}{a}) anx(n)x(az)

differential

x ( n ) ⟶ x ( z ) x(n) \longrightarrow x(z) x(n)x(z)

n x ( n ) ⟶ − z d x ( z ) d z nx(n) \longrightarrow -z \frac{dx(z)}{dz} nx(n)zdzdx(z)

convolution

x 1 ( n ) ∗ x 2 ( n ) ⟶ x 1 ( z ) ⋅ x 2 ( z ) x_1(n) * x_2(n) \longrightarrow x_1(z)·x_2(z) x1(n)x2(n)x1(z)x2(z)

initial value theorem

x ( 0 ) = lim ⁡ n → 0 x ( n ) = lim ⁡ z → + ∞ x ( z ) x(0) = \lim_{n \to 0}x(n) = \lim_{z \to +\infty}x(z) x(0)=limn0x(n)=limz+x(z)

terminal value theorem

x ( + ∞ ) = lim ⁡ n → ∞ x ( n ) = lim ⁡ z → 1 ( 1 − z − 1 ) x ( z ) x(+\infty) = \lim_{n \to \infty}x(n) = \lim_{z \to 1}(1-z^{-1})x(z) x(+)=limnx(n)=limz1(1z1)x(z)

 

Inverse transformation of z-transform

  • long division method
  • partial fraction expansion method
  • Residue method
long division method
image-20231224203722689
partial fraction expansion method

x ( z ) = z ( z − 1 2 ) ( z + 1 2 ) ( z + 1 4 ) x(z) = \frac{z(z-\frac{1}{2})}{(z+\frac{1}{2})(z+\frac{1}{4})} x(z)=(z+21)(z+41)z(z21)

x ( z ) z = z − 1 2 ( z + 1 2 ) ( z + 1 4 ) = 4 z + 1 2 − 3 z + 1 4 \frac{x(z)}{z} = \frac{z-\frac{1}{2}}{(z+\frac{1}{2})(z+\frac{1}{4})}=\frac{4}{z+\frac{1}{2}}-\frac{3}{z+\frac{1}{4}} zx(z)=(z+21)(z+41)z21=z+214z+413

x ( z ) = 4 z z + 1 2 − 3 z z + 1 4 x(z) = \frac{4z}{z+\frac{1}{2}} - \frac{3z}{z+\frac{1}{4}} x(z)=z+214zz+413z

x ( n ) = 4 ( − 1 2 ) n u ( n ) − 3 ( − 1 4 ) n u ( n ) x(n) = 4(-\frac{1}{2})^{n}u(n) -3 (-\frac{1}{4})^{n}u(n) x(n)=4(21)nu(n)3(41)nu(n)

Residue method

x ( z ) = 1 ( z − 2 ) ( z − 3 ) x(z) = \frac{1}{(z-2)(z-3)} x(z)=(z2)(z3)1

1. z n − 1 x ( z ) = z n − 1 ( z − 2 ) ( z − 3 ) z^{n-1}x(z) = \frac{z^{n-1}}{(z-2)(z-3)} zn1x(z)=(z2)(z3)zn1

2. R 1 = ( z − 2 ) z n − 1 ( z − 2 ) ( z − 3 ) ∣ z = 2 = − 2 n − 1 R_1 =(z-2)\frac{z^{n-1}}{(z-2)(z-3)}|_{z=2} = -2^{n-1} R1=(z2)(z2)(z3)zn1z=2=2n1

3. R 2 = ( z − 3 ) z n − 1 ( z − 2 ) ( z − 3 ) ∣ z = 3 = 3 n − 1 R_2 =(z-3)\frac{z^{n-1}}{(z-2)(z-3)}|_{z=3} = 3^{n-1} R2=(z3)(z2)(z3)zn1z=3=3n1

4. x ( n ) = − 2 n − 1 + 3 n − 1 x(n) = -2^{n-1} + 3^{n-1} x(n)=2n1+3n1

 

stability

S = ∑ k = − ∞ ∞ ∣ h ( n ) ∣ < + ∞ S=\sum_{k=-\infty}^{\infty}|h(n)| < +\infty S=k=h(n)<+

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1335172.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ripro最新修正升级完美版,无加密无后门无需扩展,修复多处bug

这个应该是目前最完美的ripro开源版了。 最近更新&#xff1a; 2023-12-17 修正了jsdelivr.net被墙导致后台静态资源无法加载的bug&#xff08;具体表现就是登录后台一直转圈&#xff0c;图标显示不了&#xff09;。 2023-7-05 修正了几个bug。 2022-12-05 修正了虎皮椒支付…

《C++避坑神器·二十四》简单搞懂json文件的读写之根据键值对读写Json

c11 json解析库nlohmann/json.hpp文件整个代码由一个头文件组成 json.hpp&#xff0c;没有子项目&#xff0c;没有依赖关系&#xff0c;没有复杂的构建系统&#xff0c;使用起来非常方便。 json.hpp库在文章末尾下载 读写主要有两种方式&#xff0c;第一种根据键值对读写&…

隔壁小孩馋哭了都要问我要的MySQL数据库攻略

1 Mysql数据库 1.1 数据库概念 数据 描述事物的符号记录 包括数字、文字、图形、图像声音、档案记录等 以“记录”形式按统一的格式进行存储 表 将不同的记录组织在一起 用来存储具体数据 数据库 标的合集&#xff0c;是存储数据的仓库 以定的组织方式存储打的相互有…

单片机原理及应用:Keil μVision4和Proteus 8的配置介绍

笔者所在的专业最近开设了单片机课程&#xff0c;对笔者而言&#xff0c;虽然之前有一定的代码基础。但还是第一次面对既要求代码架构又要求电路仿真的领域。为了巩固知识和增强记忆&#xff0c;特此创建了这个专栏&#xff0c;谨以一名非电专业初学者的身份记录和分享知识。 …

【软件工程】可执行文件和数据分离

一、概述 可执行文件和数据分离是一种软件设计策略&#xff0c;旨在将程序代码和程序使用的数据分离存储。这种方法通常用于提高软件的模块化程度和灵活性&#xff0c;以及方便软件的管理和维护。 在可执行文件和数据分离中&#xff0c;程序代码通常以可执行文件的形式存储&a…

.net6使用Sejil可视化日志

&#xff08;关注博主后&#xff0c;在“粉丝专栏”&#xff0c;可免费阅读此文&#xff09; 之前介绍了这篇.net 5使用LogDashboard_.net 5logdashboard rootpath-CSDN博客 这篇文章将会更加的简单&#xff0c;最终的效果都是可视化日志。 在程序非常庞大的时候&…

搬运机器人RFID传感器CNS-RFID-01|1S的RS485(MODBUS|HS协议)通讯连接方法

搬运机器人RFID传感器CNS-RFID-01|1S支持RS485通信&#xff0c;可支持RS485&#xff08;MODBUS RTU&#xff09;协议、RS485-HS协议&#xff0c;广泛应用于物流仓储&#xff0c;立库 AGV|无人叉车|搬送机器人等领域&#xff0c;常用定位、驻车等&#xff0c;本篇重点介绍CNS-RF…

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.人工兔算法4.实验参数设定5.算法结果6.参考文…

微信小程序列表点击Item回调

5 data-model 中的model可以定义任何字段 需要在event.currentTarget.dataset.model 中的model 对应即可 onClickItem(event:any) {const model event.currentTarget.dataset.model as ContactItem; // 获取传递的参数//const selectedItem this.data.contactItems[index]; …

AIOps在美团的探索与实践——事件管理篇

美团服务运维团队从事前防御、事中处理、事后运营多个阶段探索AIOps在事件管理领域的应用。本文介绍了在各个运维领域中AIOps的赋能场景&#xff0c;详细阐述了每一个运维场景的业务价值以及算法的具体的落地效果。 0 写在最前 1 背景 2 事件管理中AI能力总览 3 AIOps之事件…

网络安全保障领域

计算机与信息系统安全---最主要领域 云计算安全 IaaS、PasS、SaaS(裸机&#xff0c;装好软件的电脑&#xff0c;装好应用的电脑) 存在风险&#xff1a;开源工具、优先访问权、管理权限、数据处、数据隔离、数据恢复、调查支持、长期发展风险 云计算安全关键技术&#xff1a;可信…

案例分析:西门子智能工厂

西门子全球首家原生数字化工厂&#xff0c;以其独特的数字化技术&#xff0c;在虚拟世界中构建了工厂的数字孪生&#xff0c;从而实现了从需求分析、规划设计、施工实施到生产运营全过程的数字化。这一原生数字化工厂的创新之处在于&#xff0c;它开创性地运用了原生数字孪生理…

STM32 cubeMX 直流电机控制风扇转动

本文使用的是 HAL 库。 文章目录 前言一、直流电机介绍二、直流电机原理图三、直流电机控制方法四、STM32CubeMX 配置直流电机五、代码编写总结 前言 实验开发板&#xff1a;STM32F051K8。所需软件&#xff1a;keil5 &#xff0c; cubeMX 。实验目的&#xff1a;了解 直流电机…

iconfont拓展iview图标库

文章目录 前言1.如何下载图标&#xff1f;首先进入官网&#xff0c;找属于自己需求的图标&#xff0c;添加到购物车2.点击右上角的购物车&#xff0c;会来到此页面&#xff0c;点击下载代码3.下载完成后&#xff0c;是一个压缩包&#xff0c;文件内容如下4.在项目assets下新建一…

TCP协议工作原理及实战(一)

实战项目目标&#xff1a; ui搭建&#xff1a;clientconnect 客户端连接 clientdisconnect 客户端断开 socketreaddate 使用套接字传输数据 newconnection新的连接 获取本机的IP地址&#xff1a; 获取本机的ip地址可以参考前面的QT网络编程协议 将得到的ip地址放入combox中…

实现 Spring Boot 项目热重载,无需重启,省时省力

实现 Spring Boot 项目热重载&#xff0c;无需重启&#xff0c;省时省力 插件介绍 通过 JRebel 插件 实现 Spring Boot 项目热重载。类似于前端 Webpack 热重载功能 无需重启&#xff0c;省时省力 安装插件 打开 IDEA 在插件中搜索&#xff1a;JRebel 安装成功后重启IDEA …

[环境配置]win11关闭病毒和威胁防护防止乱删软件

选择桌面的开始图标&#xff0c;选择“设置”功能 点击隐私和安全性功能&#xff0c;进入“Windows安全中心” 点击开启Windows安全中心。 将实时保护和其他保护功能进行关闭就可以了。

【AI美图】第09期效果图,AI人工智能汽车+摩托车系列图集

期待中的未来AI汽车 欢迎来到未来的世界&#xff0c;一个充满创新和无限可能的世界&#xff0c;这里有你从未见过的科技奇迹——AI汽车。 想象一下&#xff0c;你站在十字路口&#xff0c;繁忙的交通信号灯在你的视线中闪烁&#xff0c;汽车如潮水般涌来&#xff0c;但是&…

【论文阅读笔记】SegVol: Universal and Interactive Volumetric Medical Image Segmentation

Du Y, Bai F, Huang T, et al. SegVol: Universal and Interactive Volumetric Medical Image Segmentation[J]. arXiv preprint arXiv:2311.13385, 2023.[代码开源] 【论文概述】 本文思路借鉴于自然图像分割领域的SAM&#xff0c;介绍了一种名为SegVol的先进医学图像分割模型…

Linux用户与文件权限学习

Linux是一个多用户操作系统&#xff0c;允许多个用户同时登录和使用系统资源&#xff0c;在Linux中&#xff0c;任何一个要使用系统资源的用户&#xff0c;都必须首先向系统管理员申请一个账号&#xff0c;然后以这个账号的身份进入系统。Linux的多用户管理也可以通过组的概念来…