【网络编程】基于UDP数据报实现回显服务器程序

news2024/9/25 1:18:59

个人主页:兜里有颗棉花糖
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创
收录于专栏【网络编程】【Java系列】
本专栏旨在分享学习网络编程的一点学习心得,欢迎大家在评论区交流讨论💌

前言

我们如果想让应用程序进行网络通信的话,就需要调用传输层为应用层提供的API。传输层提供的协议主要有两个:UDP和TCP,这两个协议提供了两套不同的API。操作系统给这些应用程序提供的这些用于网络通信的API起了一个名字,即socket api

目录

  • 一、UDP和TCP特点对比
  • 二、UDP数据报套接字编程
  • 三、DatagramSocket
  • 四、DatagramPacket
  • 五、通过UDP数据报实现回显服务器(echo server)
    • 5.1服务器端
    • 服务器端代码
    • 5.2客户端
    • 客户端代码

一、UDP和TCP特点对比

UDP特点:无连接、不可靠传输、面向数据报,全双工。
TCP特点:有连接、可靠传输、面向字节流,全双工。

  • 连接:我们知道JDBC编程中先创建DataSource,然后再通过DataSource创建Connection。对于TCP编程的话来存在像JDBC类似的连接方式。
  • 可靠传输/不可靠传输:可靠传输就是主机A尽可能的将消息传给zhujiB,并且当消息传输失败的时候主机A可以感知到,当然当消息传输成功的时候主机A可以得知自己发送的消息传输完毕。TCP是可靠传输但是与此同时TCP付出的代价就是TCP在进行信息传输的时候传输效率有所降低UDP是不可靠传输但是UDP在进行信息传输的时候,传输效率得到了提供。

网络安全方面(网络安指的是如果我们传输的数据被黑客):有的地方提出TCP比UDP更加安全,这种说法是错误的。

  • - 面向字节流:TCP和文件操作是类似的,都是流式的操作。这里传输的单位是字节,我们称之为字节流。TCP协议的数据传输可以传输任意长度的字节流数据,但是,一次读写的数据数量通常是由发送方和接收方的缓冲区大小决定的(比如我们可以一次性读写50字节的数据,可以一次性读写100字节的数据。)。
  • 面向数据报:UDP是面向数据报读写的基本单位,单位是一个UDP数据包。在UDP协议中,数据被封装在UDP数据报中,每个UDP数据报包含一些列的数据和属性。
  • 全双工:全双工即一个通道可以双向通信,而半双工意思就是一个通道只能偶单向通信。我们家里使用的网线就是全双工的。

二、UDP数据报套接字编程

UDP数据报套接字编程是使用UDP协议进行网络通信的一种编程方式。

在Java中,UDP是通过java.net.DatagramSocket类和java.net.DatagramPacket类来提供API的。

java.net.DatagramSocket类代表一个UDP套接字对象(Socket对象

操作系统使用文件这样的概念来管理软硬件资源(其实文件对于操作系统来说是一个非常广义的概念,不仅仅可以代表硬盘上的文件,也可以代表着其它情况的文件;文件这个概念其实有很多种含义:不仅仅是针对硬盘上的文件,也可以是其它的设备(比如键盘接入到计算机之后,计算机也是把键盘当作文件去进行处理,显示器接入到计算机之后,显示器也会被当作文件来处理))。
对于网卡来说操作系统也是使用文件的方式来管理网卡的,表示网卡的这类文件我们就称之为socket文件
在Java中,socker对象就对应系统中的socker文件,而socker文件又是用来管理网卡的(即最终依然是落到网卡,我们要想进行网络通信的话必须要通过socker对象把网卡关联起来,然后我们才能基于网卡来发送接收数据)

在java中,java.net.DatagramPacket用来表示UDP数据报。

DatagramPacket对象可以代表系统中设定的UDP数据报的二进制结构。

以上java.net.DatagramSocket类和java.net.DatagramPacket类是我们进行UDP编程中必不可少了两个类。

三、DatagramSocket

DatagramSocketUDP Socket,用于发送和接收UDP数据报。

DatagramSocket构造方法(分为有参和无参)如下:

方法签名方法说明
DatagramSocket()创建一个UDP数据报套接字的Socket对象,绑定到本机任意一个随机端口(一般用于客户端)
DatagramSocket(int port)创建一个UDP数据报套接字的Socket对象,绑定到本机指定的端口(一般用于服务端)

在这里插入图片描述

DatagramSocket类方法

方法签名方法说明
void receive(DatagramPacket p)从此套接字接收数据报(如果没有接收到数据报,该方法会阻塞等待)
void send(DatagramPacket p)从此套接字发送数据报包(不会阻塞等待,直接发送)
void close()关闭此数据报套接字

我们可以看到前两个方法的参数都是DatagramPacket,UDP是一种面向数据报的传输层协议,传输数据的基本单位就是数据报,即DatagramPacket对象

四、DatagramPacket

DatagramPacket构造方法

方法签名方法说明
DatagramPacket(byte[] buf, int length)构造一个DatagramPacket以用来接收数据报,接收的数据保存在字节数组(第一个参数buf)中,接收指定长度(第二个参数length)
DatagramPacket(byte[] buf, int offset, int length, SocketAddress address)构造一个DatagramPacket以用来发送数据报,发送的数据为字节数组(第一个参数buf)中,从0到指定长度(第二个参数length)。address指定目的主机的IP和端口号

DatagramPacket(byte[] buf, int offset, int length, SocketAddress address):我们知道DatagramPacket表示一个UDP数据报,则这个数据报就必须承载一定的数据,通过手动指定的byte[]数组来作为存储数据的空间,然后通过SocketAddress address来指定目的ip和目的端口。

DatagramPacket 方法

方法签名方法说明
InetAddress getAddress()从接收的数据报中,获取发送端主机IP地址;或从发送的数据报中,获取接收端主机IP地址
int getPort()从接收的数据报中,获取发送端主机的端口号;或从发送的数据报中,获取接收端主机端口号
byte[] getData()获取数据报中的数据,即获取的是UDP数据报中的载荷部分(即完整的应用层数据报)

五、通过UDP数据报实现回显服务器(echo server)

Udp的回显服务器:客户端发送的请求是什么服务器返回的响应就是什么

现在我们编写一个回显服务器程序:

5.1服务器端

先来看服务器端的代码编写:在这里插入图片描述
上图代码中有时候创建对象的时候会失败,最典型的创建对象失败的原因就是端口号被占用
关于端口号:端口号是用来区分主机上应用程序的,一个应用程序可以占据主机上多个端口,通常情况下一个端口只能被一个进程占用(当然这样说有些太过于绝对了,因为存在一些特殊情况,这里不展开讨论)。
所以当端口已经被别的进程占用时,此时如果我们再创建socket对象来占用此端口的话就会报错。

对于一个服务器来说要做的工作主要有三个主要环节:

  • 1.读取请求,并对请求进行解析
  • 2.根据请求计算出响应
  • 3.把相应返回给客户端

上述的三个环节对于第一步和第三步来说一般都是固定的流程和套路

  • 第一步:读取请求并对请求进行解析

在这里插入图片描述
DatagramSocket类方法中的receive(DatagramPacket p)方法中的参数DatagramPacket p是一个输出型参数,传入receive方法中的对象是一个空的对象,reveive内部就会对传入receive方法中的空的对象给填充上,当reveive方法执行完毕之后,就会得到一个充满内容的DatagramPacket

在这里插入图片描述
这里的DatagramPacker对象是用来保存数据的内存空间,其中这里内存空间的申请是需要我们手动进行申请的。
然后我们就可以将requestPacket传入到receive方法中,如下:
在这里插入图片描述
这里有异常直接抛出即可。
在这里插入图片描述
当服务器一旦启动之后并进入到while循环中,接着就会立即执行到receive方法。
我们知道,服务器并不知道什么时候发出请求,所以服务器要随时做好就接收来自客户端请求的信息。
但是当客户端的请求还没有达到服务器时。此时服务器这边就会进入到阻塞等待的状态,直到阻塞等待到有请求到达客户端。

在这里插入图片描述
requestPacket是一个DatagramPacket对象,它通过DatagramSocketreceive方法接收到的数据报会被存储在这个对象中。
requestPacket.getData()返回的是一个byte数组,代表接收到的数据报的内容。requestPacket.getLength()返回的是接收到的数据报的长度。
然后,通过String类的构造函数String(byte[] bytes, int offset, int length)将接收到的数据报的内容转换成字符串。在这个例子中,使用了读取到的数据报的内容作为字节数组,偏移量为0,长度为接收到的数据报的长度。
最终,request变量中存储的就是从数据报中提取出来的字符串内容。


requestPacket.getSocketAddress():当前我们要把数据报发送给客户端,所以此时我们就需要知道客户端的ip和端口是什么,此类信息均在DatagramPacket对象中包含着,即DatagramPacket中就包含着通信双方的ip和端口号(即客户端的ip、端口;服务器端的ip、端口均在DatagramPacket中保存着),所以我们就可以通过getSocketAddress()方法获取到当前客户端的ip和端口

服务器端代码

import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketException;

// Udp的回显服务器:客户端发送的请求是什么服务器返回的响应就是什么
public class UdpEchoServer {
    private DatagramSocket socket = null;

    // 构造方法
    public UdpEchoServer(int port) throws SocketException {
        socket = new DatagramSocket(port);
    }

    public void start() throws IOException {
        System.out.println("服务器启动!!!");
        while(true) {
            // 服务器需要长期反复的执行针对客户端请求处理的逻辑
            // 对于一个服务器来说要做的工作主要有三个主要环节"
            // 1.读取请求,并对请求进行解析
            DatagramPacket requestPacket = new DatagramPacket(new byte[4096],4096);
            socket.receive(requestPacket);
            // 可以将DatagramPacket对象中的字节数组转换成字符串,这样的转字符串的前提时后续客户端发送的数据是一个文本字符串
            // 如果客户端发送的数据是一个二进制,这里就不合适了
            // 大体梳理一下:通过DatagramSocket类中的receive方法来读取到requestPacket(数据报对象)中的内容,
            // 然后再进一步的将数据报中的载荷提取并转换为字符串
            String request = new String(requestPacket.getData(),0, requestPacket.getLength());

            // 2.根据请求计算出响应
            String response = process(request);
            // 3.把相应返回给客户端

            // 此时要告知网卡要发送的内容以及,要发给谁两部分内容
            DatagramPacket responsePacket = new DatagramPacket(response.getBytes(),response.getBytes().length,
                    requestPacket.getSocketAddress());
            socket.send(responsePacket);
            // 而对于这里的回显服务器来说不需要关心具体的流程,因为回显服务器请求是什么返回的响应就是什么
            // 但是对于一个商业级的服务器来说,最主要的代码就是完成第二步的代码编写
            // 记录日志,方便观察
            System.out.printf("[%s:%d] req: %s, resp : %s\n",requestPacket.getSocketAddress().toString(),requestPacket.getPort(),
                    request,response);
        }
    }
    // 第二步:根据请求计算响应,由于我们写的程序是一个回显服务器,所以响应内容和请求是一致的,即请求是什么响应就是什么
    public String process(String request) {
        return request;
    }
    public static void main(String[] args) throws IOException {
        UdpEchoServer server = new UdpEchoServer(9090);
        server.start();
    }
}

5.2客户端

在这里插入图片描述

客户端代码

import java.io.IOException;
import java.net.*;
import java.util.Scanner;

public class UdpEchoClient {
    private DatagramSocket socket = null;
    private String serverIp;
    private int serverPort;

    // 服务器的ip和服务器的端口
    public UdpEchoClient(String ip,int port) throws SocketException {
        serverIp = ip;
        serverPort = port;
        // 下面的new操作就不需要再指定端口了,而是让系统随机分配一个空闲端口
        socket = new DatagramSocket();
    }

    // 让客户端反复的从控制台中读取用户输入的信息
    // 然后把这个内容构造成UDP请求发送给服务器,再读取服务器返回的UDP响应
    // 最终显示再客户端的屏幕上
    public void start() throws IOException {
        Scanner scanner = new Scanner(System.in);
        System.out.println("客户端启动!!!");
        while(true) {
            // 1.从控制台读取用户输入的用户输入的内容。
            System.out.printf("-->"); // 命令提示符来提示用户输入字符串
            String request = scanner.next();
            // 2.构造请求对象并发送给服务器
            DatagramPacket requestPacket = new DatagramPacket(request.getBytes(),request.getBytes().length,
            InetAddress.getByName(serverIp),serverPort);
            socket.send(requestPacket);
            // 3.读取服务器的响应,并解析出响应内容
            DatagramPacket responsePacket = new DatagramPacket(new byte[4096],4096);
            socket.receive(responsePacket);
            String response = new String(responsePacket.getData(),0,responsePacket.getLength());
            // 4.将结果打印到屏幕上
            System.out.println(response);
        }
    }
    public static void main(String[] args) {
    }
}

在这里插入图片描述在这里插入图片描述

以上就是回显服务器程序的所有代码。

程序运行结果如下(注意一定是服务器先开始运行):
在这里插入图片描述
在这里插入图片描述
如果我们启动多个客户端的话,此时服务器依然是可以应对的。
此时我们需要对我们的IDEA进行一些设置,请看:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以看到两个客户端同时在跑。

本文到这里就结束了,希望友友们可以支持一下一键三连哈。嗯,就到这里吧,再见啦!!!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1334842.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自媒体短视频音效、配乐素材哪里找?

找短视频音乐、音效素材就上这5个网站,免费下载,建议收藏。 1、潮点视频 https://shipin520.com/shipin-yy/?from_code2510 一个专门分享高质量视频的网站,站内还有非常丰富的配乐素材,全部都有详细的分类,可以选择…

【深度学习-目标检测】02 - Fast R-CNN 论文学习与总结

论文地址:Fast R-CNN 论文学习 1. 摘要(Abstract) Fast R-CNN方法的提出: 论文提出了一种快速区域卷积网络的办法,基于之前的R-CNN网络进行改进。 效率和准确性的提升: Fast R-CNN 在之前的工作基础上&a…

CentOS环境下Nacos2.3集成PostgreSQL

title: CentOS环境下Nacos2.3集成PostgreSQL date: 2023-12-21 19:15:00 categories: Nacos description: CentOS环境下Nacos2.3集成PostgreSQL 1. 目录 1. 目录2. 简介3. 安装部署 3.1. 部署模式3.2. 环境准备3.3. 下载安装文件3.4. PostgreSQL插件 3.4.1. 下载地址3.4.2. 结…

南邮算法期末复习

算法复习 知识点 多项式时间复杂度是指在多项式阶内(例如,O(n^2), O(n^3))增长的算法。AOE网中的关键路径 ,就是完成整个网络所需的最短时间,亦最长路径 ,AOE网中,往往有若干项活动可以平行的…

ThunderSearch(闪电搜索器)_网络空间搜索引擎工具_信息收集

文章目录 ThunderSearch简介1 项目地址2 使用方式2.1 配置文件config.json说明2.2 构建和运行 3 使用式例 ThunderSearch简介 ThunderSearch(闪电搜索器)是一款使用多个(【支持Fofa、Shodan、Hunter、Zoomeye、360Quake网络空间搜索引擎】网络空间搜索引…

如何实现https密钥对登录方式

先安装docker yum install -y yum-utils device-mapper-persistent-data lvm2 yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo systemctl start docker.service systemctl enable docker.service yum install -y docker…

为何教育行业需要搭建自己的知识付费平台,而非入驻其他公域流量平台

在当今的知识经济时代,教育行业正面临着前所未有的机遇和挑战。随着知识付费市场的蓬勃发展,越来越多的教育机构和个人教师选择进入这一领域,以扩大影响力并实现知识变现。然而,在选择进入知识付费市场的路径时,教育行…

2023年12月【考试战报】|ORACLE OCP 19C考试通过

2023年10月【考试战报】|ORACLE OCP 19C考试通过-CSDN博客文章浏览阅读122次。自OCP认证进入中国以来,越来越被大多数DBA所认可,也越来越被企业所重视,90%以上DBA深造,都会选择OCP认证。随着OCP认证在全国范围内的普及&#xff0c…

【hacker送书第11期】Python数据分析从入门到精通

探索数据世界,揭示未来趋势 《Python数据分析从入门到精通》是你掌握Python数据分析的理想选择。本书深入讲解核心工具如pandas、matplotlib和numpy,助您轻松处理和理解复杂数据。 通过matplotlib、seaborn和创新的pyecharts,本书呈现生动直…

poi-tl之图表操作(基于模板)

poi-tl&#xff08;poi template language&#xff09;是Word模板引擎&#xff0c;使用Word模板和数据创建很棒的Word文档。 核心思想是在模板中放一个占位符&#xff0c;在代码中替换该占位符即可。 poi官网地址 点这里 基础工作 maven配置 <dependency><groupId&g…

猫头虎分享2023年12月17日博客之星候选--城市赛道博主文章数据

猫头虎分享2023年12月17日博客之星候选–城市赛道博主文章数据 博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开…

云渲染UE4像素流送搭建(winows、ubuntu)

windows/ubuntu20.4下UE4.27.2像素流送 像素流送技术可以将服务器端打包的虚幻引擎应用程序在客户端的浏览器上运行&#xff0c;用户可以通过浏览器操作虚幻引擎应用程序&#xff0c;客户端无需下载虚幻引擎&#xff0c;本文实现两台机器通过物理介质网线实现虚幻引擎应用程序…

给零基础朋友的编程课07 - 代码

给零基础朋友的编程课07-初识色彩、初识变量、案例3讲解_哔哩哔哩_bilibili Code: // // 案例3 // //// -设定画面- // size(1000, 1000); // 设置画面大小 background(7, 119, 132); // 设置背景颜色// - 绘画 - //// 1 绘制垂线 // 设定线条风格 …

医药保健品企业网站搭建的作用是什么

市场中的保健品品牌非常多&#xff0c;很多医院或药店都有售卖&#xff0c;同时也有不少经常消费的人群&#xff0c;但从行业整体趋势来看&#xff0c;目前国内真正信任保健品的人并不算非常多&#xff0c;行业缺少对市场消费人群的教育及行业的相关限制&#xff0c;无论对品牌…

超炫酷的网红游戏主播/带货达人/歌手/人物介绍视频素材PR模板

Premiere网红//游戏主播、带货达人\主唱歌手\DJ晚会派对人物介绍视频素材pr模板下载。 包括&#xff1a; 全高清&#xff08;19201080&#xff09; 4K&#xff0c;&#xff08;38402160&#xff09; 全高清&#xff08;19201080&#xff09; 4K&#xff0c;&#xff08;3840216…

Tailwind CSS 原子化开发初体验

Tailwind CSS 的工作原理是扫描所有 HTML 文件、JavaScript 组件以及任何模板中的 CSS 类&#xff08;class&#xff09;名&#xff0c;然后生成相应的样式代码并写入到一个静态 CSS 文件中。他快速、灵活、可靠&#xff0c;没有运行时负担。再也不用为了取一个 classname 类名…

使用 FFmpeg 清除文件夹下所有 .mp4 文件声音

运行以下命令来清除声音&#xff1a; ffmpeg -i input.mp4 -c copy -an output.mp4这个命令会将 “input.mp4” 替换为你要处理的 .mp4 文件名。它会生成一个新的文件名为 “output.mp4” 的文件&#xff0c;该文件是没有声音的副本。 如果你想要直接替换原始文件&#xff0c;…

文件名修改方法:文件批量重命名,并将扩展字母统一转换为大写

在文件管理中&#xff0c;文件名的修改是一项常见的任务。有时候&#xff0c;可能要将文件名进行批量重命名&#xff0c;或者将所有的扩展名统一转换为大写。那怎么操作会更简单快速些呢&#xff1f;下面将详细讲解云炫文件管理器如何实现这一目标&#xff0c;批量用随机数字重…

MongoDB查询文档

3.5 MongoDB 查询文档 MongoDB 查询文档使用 find() 方法。 find() 方法以非结构化的方式来显示所有文档。find()查询数据的语法格式如下&#xff1a; db.collection.find(query, projection)[.pretty()] query &#xff1a;可选&#xff0c;使用查询操作符指定查询条件 pr…

哪个牌子的台灯对学生的视力好?五款学生备考台灯推荐

护眼台灯在如今市场中销量越来越高&#xff0c;我作为一名电器测评博主&#xff0c;非常支持大家使用护眼台灯来提升日常的照明光线环境&#xff0c;它通过LED灯和专业的护眼技术&#xff0c;可以有效缓解用眼疲劳、帮助放松和舒适照明。但需要注意的是&#xff0c;目前市场中品…