期末加油站-图像处理期末知识点汇总

news2025/1/16 1:00:17

第三章:图像增强

一、概念

1.图像增强是通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
2. 图像增强处理不是无损处理,不能增加原图像的信息。
3. 图像增强按所处理的对象不同可分为: 灰度图像增强彩色图像增强
图像增强按增强处理所在空间不同分为: 空域增强方法频域增强方法

空域增强:直接在图像所在的二维空间进行处理,即直接对每一像素的灰度值进行处理。
空域增强按技术不同可分为灰度变换空域滤波。灰度变换是一种点处理方法。
  灰度变换:基于点操作,将每一个像素的灰度值按照一定的数学变换公式转换为一个新的灰度值。常用方法:对比度增强、直方图均衡化等。
  空域滤波:基于邻域处理,应用某一模板对每个像素及其周围邻域的所有像素进行某种数学运算,得到该像素的新的灰度值。图像平滑与锐化技术就属于空域滤波。

频域增强:首先经过傅里叶变换将图像从空间域变换到频率域,然后在频率域对频谱进行操作和处理,再将其反变换到空间域,从而得到增强后的图像。

4.图像增强效果评价:定性和定量评价。
  ●定量评价:无统一标准。一般从图像的信息量、标准差、均值、纹理度量值和具体研究对象的光谱特征等方面与原始图像进行比较评价。
  ●定性评价:主要从人的主观感觉出发,依靠图像的视觉效果进行评价。 定性评价又分为绝对评价与相对评价。
在这里插入图片描述

●常用的灰度变换函数主要有:
  1.线性灰度变换:将输入图像(原始图像)灰度值的动态范围按线性关系公式拉伸扩展至指定范围或整个动态范围。
  2.分段线性灰度变换:局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸。分段线性拉伸是仅将某一范围的灰度值进行拉伸,而其余范围的灰度值实际上被压缩了。
  3.非线性灰度变换:非线性拉伸不是对图像的整个灰度范围进行扩展,而是有选择地对某一灰度值范围进行扩展,其他范围的灰度值则有可能被压缩。
  与分段线性拉伸区别:非线性拉伸不是通过在不同灰度值区间选择不同的线性方程来实现对不同灰度值区间的扩展与压缩,而是在整个灰度值范围内采用统一的非线性变换函数,利用函数的数学性质实现对不同灰度值区间的扩展与压缩。
  常用的非线性扩展方法:(1) 对数扩展 (2)指数扩展 (3)幂次变换 (4)灰度分层 (5)位图切割

二、直方图变换增强

直方图是多种空间域处理技术的基础,直方图操作能有效地用于图像增强。
1.灰度直方图
  灰度直方图是灰度值的函数,它描述了图像中各灰度值的像素个数。通常用横坐标表示像素的灰度级别,纵坐标表示对应的灰度级出现的频率(像素的个数)。
在这里插入图片描述
在这里插入图片描述

2.直方图的性质
(1)直方图反映了图像中的灰度分布规律,没有位置信息。
(2)任何一幅特定的图像都有唯一的直方图与之对应,但不同的图像可以有相同的直方图。
(3)直方图具有可叠加性:如果一幅图像有多个不相连的区域组成,并且每个区域的直方图已知,则整幅图像的直方图是多个区域的直方图之和。

3.方图的统计特征——矩、绝对矩、中心距、绝对中心距和熵。

4.直方图均衡化
在这里插入图片描述

  通过把原图像的直方图通过变换函数修正为分布比较均匀的直方图,从而改变图像整体偏暗或整体偏亮,灰度层次不丰富的情况,这种技术叫直方图均衡化。 通过修改直方图的方法增强图像是一种实用而有效的处理技术。
  ●基本思想:是使目标图像的直方图具有平直的直方图,从而改变图像整体偏暗或整体偏亮,灰度层次不丰富的情况。直观概念是对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减,从而达到清晰图像的目的。
  ●基本方法:通过灰度r的概率密度函数,求出灰度变换函数,建立等值像素出现的次数与结果图像像素值之间的关系。形成一种自动调节图像对比度质量的算法。
在这里插入图片描述

5.直方图均衡化计算
即:给定原始直方图数据求均衡化的直方图数据。
★例题:
在这里插入图片描述
在这里插入图片描述
提示1:nk为该灰度级的数量。n为像素点个数,如64×64的图像,有64×64个像素点。
提示2:上图中rk是什么呢?因为有八个灰度级,所以平均分成八份。rk就是这八个灰度级的横坐标,如下图。
在这里插入图片描述

求解步骤:
(1)计算S0~S7的值。
在这里插入图片描述
(2)将计算的值以1/7为量化单位进行舍入。舍入后查看有几个灰度级。如下图有1/7、3/7、5/7、6/7、1这五个灰度级。

在这里插入图片描述
(3)将均衡化的数据相同的灰度级填入原直方图相应灰度级的位置。右边就是我们均衡化后的直方图数据。
在这里插入图片描述
在这里插入图片描述
6.直方图规定化
  直方图均衡化能够得到近似均匀分布的直方图。但由于变换函数采用累积分布函数,也只能产生近似均匀的直方图的结果,这样就会限制它的效果。
  实际应用中,有时需要具有特定直方图的图像,以便能够增强图像中某些灰度级。直方图规定化方法可以按照预先设定的某个形状来调整图像的直方图。
  直方图规定化就是把直方图均衡化结果映射到设想的理想直方图上,是对直方图均衡化处理的一种有效的扩展。直方图均衡化处理是直方图规定化的一个特例。
在这里插入图片描述
★例题:
在这里插入图片描述
解答:
(1)均衡化在这里插入图片描述
(2)画表
在这里插入图片描述

三、空间平滑滤波增强

空域平滑滤波器的设计比较简单,常用的有邻域均值法中值滤波法,前者是线性的,后者则是非线性的。

1. 邻域平均法(相当于卷积操作)

(1)非加权均值滤波
  假设图像由许多灰度恒定的小块组成,相邻像素间存在很高的空间相关性,而噪声则相对独立。可以将一个像素及其邻域内的所有像素的平均灰度值赋给平滑图像中对应的像素,从而达到平滑的目的,又称均值滤波或局部平滑法。(目标图像像素周围像素求均值)
在这里插入图片描述
在这里插入图片描述

● 均值滤波法的增强效果:
在这里插入图片描述

(2)加权均值滤波

在这里插入图片描述

★例题:
在这里插入图片描述
解: g(7,5)=1/16(26×1+38*2+37×1+40×2+68×4+75×2+36×1+55×2+73×1)=53.875≈54

2. 中值滤波

在这里插入图片描述
中值滤波优缺点:对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能保持图像中的细节部分,防止边缘模糊。对点、线等细节较多的图像不太合适。

★例题:
在这里插入图片描述
解题步骤:
在这里插入图片描述

中值滤波的效果:
在这里插入图片描述

3. 超限像素平滑法

在这里插入图片描述

4. 高斯滤波

在这里插入图片描述

四、频域增强

  图像增强除可在空域进行外,也可以在变换域进行。变换域增强是首先经过某种变换将图像从空间域变换到变换域,然后在变换域对频谱进行操作和处理,再将其反变换到空间域,从而得到增强后的图像。
  在变换域处理中最为关键的是变换处理,一般是线性变换,并且满足一定的正交条件。
  在图像增强处理中,最常用的正交变换是傅立叶变换。当采用傅立叶变换进行增强时,把这种变换域增强称为频域增强。

1. 频域滤波的主要步骤:

 (1)对原始图像 f(x,y) 进行傅立叶变换得到 F(u,v)。
 (2)将 F(u,v) 与传递函数 H(u,v) 进行卷积运算得到 G(u,v)。
 (3)将 G(u,v) 进行傅立叶逆变换得到增强图 g(x,y)。频域滤波的核心在于如何确定传递函数,即H(u,v)。
H(u,v)为传递函数/滤波器函数。
在这里插入图片描述

常用的傅里叶变换:一维傅里叶变换、二维傅里叶变换、一维离散傅立叶变换、二维离散傅立叶变换。

2. 频谱的频域移中

  常用的傅立叶正反变换公式都是以零点为中心的公式,其结果中心最亮点却在图像的左上角,作为周期性函数其中心最亮点将分布在四角,这和正常的习惯不同,因此,需要把这个图像的零点移到显示的中心。例如把F(u,v)的原零点从左上角移到显示屏的中心。
  频域移位特性:对频域信号进行移位,时域信号需要乘以一个对应的指数函数。图像信号在进行变换之前需要对每一个像素乘以(-1)^x+y次方。简言之,一正一负,每隔一个像素乘以一个负号。
在这里插入图片描述
在这里插入图片描述

3. 滤波方式

(1)低通滤波(消除噪声,但图像变模糊)

  ➢图像从空间域变换到频率域后,其低频分量对应图像中灰度值变化比较缓慢的区域,高频分量则表征图像中物体的边缘和随机噪声等信息。
  ➢低通滤波是指保留低频分量,而通过滤波器函数H(u,v)减弱或抑制高频分量的过程。
  ➢低通滤波与空域中的平滑滤波器一样可以消除图像中的随机噪声,减弱边缘效应,起到平滑图像的作用。

  图像平滑是指受传感器和大气等因素的影响,遥感图像上会出现某些亮度变化过大的区域,或出现一些亮点(也称噪声。这种为了抑制噪声使图像亮度趋于平缓的处理方法就是图像平滑。图像平滑实际上是低通滤波,平滑过程会导致图像边缘模糊化。

低通滤波器:

▲理想低通滤波器

在这里插入图片描述
在这里插入图片描述
理想低通滤波器效果:
在这里插入图片描述

缺点: 理想低通滤波器的平滑作用非常明显,但由于变换有一个陡峭的波形,它的反变换H(x,y)有强烈的振铃特性,使滤波后图像产生模糊效果。因此这种理想低通滤波实用中不能采用!!
在这里插入图片描述

▲巴特沃斯低通滤波器

特点:在通过频率与截止频率之间没有明显的不连续性,不会出现“振铃”现象,其效果好于理想低通滤波器。

在这里插入图片描述
在这里插入图片描述

▲指数低通滤波器

特点:指数低通滤波器从通过频率到截止频率之间没有明显的不连续性,而是存在一-个平滑的过渡带。指数低通滤波器实用效果比Butterworth低通滤波器稍差,但仍无明显的振铃现象。

在这里插入图片描述

▲梯形低通滤波器

特点:结果图像的清晰度较理想低通滤波器有所改善,振铃效应也有所减弱。应用时可调整D1值,既能达到平滑图像的目的,又可以使图像保持足够的清晰度。

在这里插入图片描述
  

(2)高通滤波(消除模糊,实现锐化图像)

  图像的边缘、细节主要在高频,图像模糊是由于高频成分较弱产生的。为了消除模糊,突出边缘,可以采用高通滤波的方法,使低频分量得到抑制,从而达到增强高频分量,使图像的边沿或线条变得清晰,实现图像的锐化。

高通滤波器:

▲理想高通滤波器:

在这里插入图片描述

▲Butterworth滤波器:

在这里插入图片描述

▲指数滤波器:

在这里插入图片描述

▲梯形高通滤波器:

在这里插入图片描述

四种高通滤波器比较:

➢理想高通有明显振铃,图像的边缘模糊不清。
➢Butterworth 高通效果较好,振铃不明显,但计算复杂。
➢指数高通效果比Butterworth差些,但振铃也不明显。
➢梯形高通的效果是微有振铃、但计算简单,故较常用。.
➢一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也使噪声增强。因此,不能随意地使用。

(3)带阻滤波与带通滤波

(4)同态滤波


五、图像的锐化

1. 基本方法:微分方法、高通滤波。

  图像在传输或变换过程中会退化,典型的现象是图像模糊,因而在图像判读和识别过程中,需要增强边缘信息,使得识别目标更容易。
  图像锐化的目的是使灰度反差增强,从而增强图像中边缘信息,有利于轮廓抽取。轮廓或边缘是图像中灰度变化率最大的地方。因此,轮廓抽取就是要找一种方法把图像的最大灰度变化处找出来。
  图像平滑通过积分过程使得图像边缘模糊,图像锐化则通过微分而使图像边缘突出、清晰。
  图像边缘一般都是通过对图像进行梯度运算来实现的。
  图像的边缘检测通常涉及到卷积操作,这可以看作是对图像进行导数操作的一种近似。在这种情况下,卷积核(filter)可以看作是导数的近似。

●梯度与边缘
  梯度值正比于像素之差。对于一幅图像中突出的边缘区,其梯度值较大;在平滑区域梯度值小;对于灰度级为常数的区域,梯度为零。
  边缘(Edge)是指图像局部特性的不连续性,灰度或结构等信息的突变处称之为边缘。例如,灰度级的突变、颜色的突变、纹理结构的突变等。图像边缘是图像最基本的特征。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。
在这里插入图片描述

2. 梯度算子:利用像素点上下、左右邻点灰度差检测边缘。

  我们需要将该算子与图像中的每个像素进行卷积运算。卷积运算的过程是将算子与图像的局部区域进行元素级别的乘法,并将乘积相加,最后得到一个新的像素值。这个新的像素值表示了该位置上的梯度大小。

(1)Roberts(罗伯特)算子–梯度交叉算子

在这里插入图片描述在这里插入图片描述

(2)Sobel算子

在这里插入图片描述

过程:
在这里插入图片描述
两个方向的梯度相加:

(3)Prewitt梯度算子

在这里插入图片描述

(4)Laplacian算子—二阶微分算子

在这里插入图片描述
在这里插入图片描述

3. 四个算子的特点:

Roberts算子:利用局部差分算子寻找边缘,边缘定位精度较高,但容易丢失一部分边缘,同时由于图像没经过平滑处理,因此不具备能抑制噪声能力。该算子对具有陡峭边缘且含噪声少的图像效果较好。
Sobel算子和Prewitt算子:都是对图像先做加权平滑处理,然后再做微分运算,所不同的是平滑部分的权值有些差异,因此对噪声具有一定的抑制能力,但不能完全排除检测结果中出现的虚假边缘。虽然这两个算子边缘定位效果不错,但检测出的边缘容易出现多像素宽度。
Laplacian算子:不依赖于边缘方向的二阶微分算子,对图像中的阶跃型边缘点定位准确,该算子对噪声非常敏感,它使噪声成分得到加强,这两个特性使得该算子容易丢失一部分边缘的方向信息,造成一些不连续的检测边缘,同时抗噪声能力比较差。


六、色彩增强

➢常用的彩色增强方法有真彩色增强技术假彩色增强技术伪彩色增强技术三种。
➢真彩色增强技术和假彩色增强技术两种方法着眼于对多幅灰度图像的合成处理,一般是将三幅图像分别作为红、绿、整个通道进行合成。
➢伪彩色增强技术是对一幅恢度图像的处理,通过一定的方法,将一幅灰度图像变换生成一幅彩色图像。

1. 真色彩增强

➢能真实反映自然物体本来颜色的图像叫真彩色图像。
➢在没有彩色摄像机的情况下,可以通过真彩色增强技术实现真彩色处理。
  处理过程:首先用加有红色滤色片的摄像机(黑白摄像机)摄取彩色图像,经数字化送入一块图像存储板存起来,然后用带有绿色滤色片的摄像机摄取图像,经数字化送入第二块图像存储板,最后用带有蓝色滤色片的摄像机摄取图像,存储在第三块图像存储板内。这样,就可以在彩色监视器上合成一幅真彩色图像。
在这里插入图片描述

2. 假色彩增强

  假彩色(falsecolor)增强是将–幅彩色图像映射为另–幅彩色图像,从而达到增强彩色对比,使某些图像达到更加醒目的目的。如将一幅自然彩色图像或多光谱图像通过映射函数变换成新的三基色分量,彩色合成使感兴趣目标呈现出与原图像中不同的、奇异的彩色。
在这里插入图片描述

3. 伪色彩增强

伪彩色(pesudo color)增强则是把一幅灰度 图像的不同灰度级映射为一幅彩色图像的技术手段。
  详细来说就是把一幅黑白图像的每个不同灰度级按照线性或非线性的映射函数变换成不同的彩色,得到一幅彩色图像,使原图像细节更易辨认。

●三种方法:

(1)密度分割法

  特别地,如果将每一个灰度值都划分成一个区间,如将8bit灰度图像划分成256个区间,就是索引图像。可以认为索引图像是由灰度图像经密度分割生成的。
  一般,每一灰度值区间赋予何种颜色由具体应用决定,并无规律可言,但相邻灰度值区间的颜色差别不宜太小/大。此法比较直观、简单,缺点是变换出的彩色数目有限。

在这里插入图片描述

(2)空间域灰度级-彩色变换

  根据色度学的原理,将原图像f(x,y)中每一个像元的灰度值分别经过红、绿、蓝三种独立变换Tp(.), Ta(.)和Tp(.),变成红、绿、蓝三基色分量R(x,y), G(x,y), B(x,y)分量图像,然后用它们分别去控制彩色显示器的红、绿、蓝电子枪,便可以在彩色显示器的屏幕上合成一幅彩色图像。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(3)频率域伪色彩增强

  把黑白图像从空间域经傅里叶变换变到频率域,然后在频率域内用三个不同传递特性的滤波器将图像分离成三个独立的分量,对每个范围内的频率分量分别进行傅里叶反变换,得到三幅代表不同频率分量的单色图像,接着对这三幅图像作进一步的处理(如直方图均衡化),最后将它们作为三基色分量分别加到彩色显示器的红、绿、蓝显示通道,从而实现频率域的伪彩色增强。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331758.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

汽车服务品牌网站建设的作用是什么

汽车服务涵盖多个层面,在保修维护这一块更是精准到了车内车外,无论是品牌商还是市场中各维修部,都能给到车辆很好的维修养护服务。如今车辆的人均拥有量已经非常高,也因此市场中围绕汽车相关的从业者也比较多。 首先就是拓客引流…

ApsaraMQ Serverless 演进之路,助力企业降本

作者:家泽 ApsaraMQ 与时俱进,砥砺前行 阿里云消息队列从诞生开始,至今已有十余年。今年,阿里云消息产品全面品牌升级为 ApsaraMQ,与时俱进,砥砺前行。 2012 年,RocketMQ 诞生于集团内部&…

DLLNotFoundException:xxx tolua... 错误打印

DLLNotFoundException:xxx tolua... 错误打印 一、DLLNotFoundException介绍二、Plugins文件夹文件目录结构如下: 三、Plugins中的Android文件夹四、Plugins中的IOS文件夹这里不说了没测试过不过原理应该也是选择对应的平台即可五、Plugins中的x86和X86_64文件夹 一…

Hadoop入门学习笔记——六、连接到Hive

视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 六、连接到Hive6.1. 使用Hive的Shell客户端6.2. 使用Beel…

【一起学Rust | 框架篇 | Tauri2.0框架】Tauri2.0环境搭建与项目创建

文章目录 前言一、搭建 Tauri 2.0 开发环境二、创建 Tauri 2.0 项目1.创建项目2.安装依赖4. 编译运行 三、设置开发环境四、项目结构 前言 Tauri在Rust圈内成名已久,凭借Rust的可靠性,使用系统原生的Webview构建更小的App 以及开发人员可以灵活的使用各…

WARNING: HADOOP_SECURE_DN_USER has been replaced by HDFS_DATANODE_SECURE_USER.

Hadoop启动时警告,但不影响使用,强迫症的我还是决定寻找解决办法 WARNING: HADOOP_SECURE_DN_USER has been replaced by HDFS_DATANODE_SECURE_USER. Using value of HADOOP_SECURE_DN_USER.原因是Hadoop安装配置于root用户下,对文件需要进…

Linux---基础操作命令

内容导航 类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统…

一文详解SpringBoot 定时任务(cron表达式)

IDE:IntelliJ IDEA 2022.2.3 x64 操作系统:win10 x64 位 家庭版 JDK: 1.8 文章目录 一、如何开启一个SpringBoot定时任务?二、cron表达式详解2.1 语法格式2.2 符号解析2,2.1 通用符号: , - * /2.2.2 专有符号:?L w 2.3…

【JAVA】分布式链路追踪技术概论

目录 1.概述 2.基于日志的实现 2.1.实现思想 2.2.sleuth 2.2.可视化 3.基于agent的实现 4.联系作者 1.概述 当采用分布式架构后,一次请求会在多个服务之间流转,组成单次调用链的服务往往都分散在不同的服务器上。这就会带来一个问题:…

异常处理和单元测试python

一、实验题目 异常处理和单元测试 二、实验目的 了解异常的基本概念和常用异常类。掌握异常处理的格式、处理方法。掌握断言语句的作用和使用方法。了解单元测试的基本概念和作用。掌握在Python中使用测试模块进行单元测试的方法和步骤。 三、实验内容 编程实现如下功能&a…

跨平台Markdown编辑软件Typora mac功能介绍

Typora mac是一款跨平台的Markdown编辑器,支持Windows、MacOS和Linux操作系统。它具有实时预览功能,能够自动将Markdown文本转换为漂亮的排版效果,让用户专注于写作内容而不必关心格式调整。Typora Mac版除了支持常见的Markdown语法外&#x…

网站被CC攻击了怎么办?CC攻击有什么危害

网络爆炸性地发展,网络环境也日益复杂和开放,同时各种各样的恶意威胁和攻击日益增多,其中网站被CC也是常见的情况。 CC攻击有什么危害呢? 被CC会导致: 1.访问速度变慢:网站遭受CC攻击后,由于…

模式识别与机器学习(十一):Bagging

1.原理 Bagging [Breiman, 1996a] 是井行式集成学习方法最著名的代表.从名字即可看出,它直接基于自助采样法(bootstrap sampling)。给定包含m 个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得…

高频知识汇总 | 【操作系统】面试题汇总(万字长博通俗易懂)

前言 这篇我亲手整理的【操作系统】资料,融入了我个人的理解。当初我在研习八股文时,深感复习时的困扰,网上资料虽多,却过于繁杂,有的甚至冗余。例如,文件管理这部分,在实际面试中很少涉及&…

《PySpark大数据分析实战》-18.什么是数据分析

📋 博主简介 💖 作者简介:大家好,我是wux_labs。😜 热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP…

展望2023年CSDN博客之星评选

目录 1 前言2 博客的意义3 人工智能对博客的影响4 AI 技术下的成长与分享5 技术的探索6 博客之星评选对于技术人的激励作用7 结语 1 前言 当我们回顾过去,博客不仅仅是一种记录生活、分享经验的方式,更是一个见证自我成长与进步的平台。站在2023年度 CS…

Python算法例25 落单的数Ⅲ

1. 问题描述 给出2n2个非负整数元素的数组,除其中两个数字之外,其他每个数字均出现两次,找到这两个数字。 2. 问题示例 给出[1,2,2,3,4,4,5,3]&#xff0c…

SpringIOC之AbstractMessageSource

博主介绍:✌全网粉丝5W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…

nodejs+vue+微信小程序+python+PHP计算机网络在线考试系统-计算机毕业设计推荐

信息数据的处理完全依赖人工进行操作, 所以电子化信息管理的出现就能缓解以及改变传统人工方式面临的处境,一方面可以确保信息数据在短时间被高效处理,还能节省人力成本,另一方面可以确保信息数据的安全性,可靠性&…

el-tree lazy懒加载(进阶版)

2023.12.22今天我学习了el-tree如何实现懒加载&#xff0c;效果如&#xff1a; 代码如下&#xff1a; 懒加载的使用不需要用:data <template><div><el-tree:props"props":load"loadNode"lazynode-key"id"show-checkbox/><…