BIT-6-指针(C语言初阶学习)

news2025/1/17 14:00:11

1. 指针是什么
2. 指针和指针类型
3. 野指针
4. 指针运算
5. 指针和数组
6. 二级指针
7. 指针数组


1. 指针是什么?


指针是什么?
指针理解的2个要点:

  1. 指针是内存中一个最小单元的编号,也就是地址
  2. 平时口语中说的指针,通常指的是指针变量,是用来存放内存地址的变量

总结:指针就是地址,口语中说的指针通常指的是指针变量。

那我们就可以这样理解:

内存

指针变量

我们可以通过&(取地址操作符)取出变量的内存其实地址,把地址可以存放到一个变量中,这个变量就是指针变量

#include <stdio.h>
int main()
{
    int a = 10;//在内存中开辟一块空间
    int *p = &a;//这里我们对变量a,取出它的地址,可以使用&操作符。
          //a变量占用4个字节的空间,这里是将a的4个字节的第一个字节的地址存放在p变量
            中,p就是一个之指针变量。
    return 0;
}

总结:

指针变量,用来存放地址的变量。(存放在指针中的值都被当成地址处理)。
那这里的问题是:

  • 一个小的单元到底是多大?(1个字节)
  • 如何编址?

经过仔细的计算和权衡我们发现一个字节给一个对应的地址是比较合适的。

对于32位的机器,假设有32根地址线,那么假设每根地址线在寻址的时候产生高电平(高电压)和低电平(低电压)就是(1或者0);

那么32根地址线产生的地址就会是:

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000001
...
11111111 11111111 11111111 11111111

这里就有2的32次方个地址。
每个地址标识一个字节,那我们就可以给 (2^32Byte == 2^32/1024KB ==
2^32/1024/1024MB==2^32/1024/1024/1024GB == 4GB) 4G的空间进行编址。
同样的方法,那64位机器,如果给64根地址线,那能编址多大空间,自己计算。

这里我们就明白:

  • 在32位的机器上,地址是32个0或者1组成二进制序列,那地址就得用4个字节的空间来存储,所以一个指针变量的大小就应该是4个字节。
  • 那如果在64位机器上,如果有64个地址线,那一个指针变量的大小是8个字节,才能存放一个地址。

总结:

  • 指针变量是用来存放地址的,地址是唯一标示一个内存单元的。
  • 指针的大小在32位平台是4个字节,在64位平台是8个字节。

2. 指针和指针类型

这里我们在讨论一下:指针的类型
我们都知道,变量有不同的类型,整形,浮点型等。那指针有没有类型呢?
准确的说:有的。

当有这样的代码:

int num = 10;
p = &num;

要将&num(num的地址)保存到p中,我们知道p就是一个指针变量,那它的类型是怎样的呢?
我们给指针变量相应的类型。

char  *pc = NULL;
int  *pi = NULL;
short *ps = NULL;
long  *pl = NULL;
float *pf = NULL;
double *pd = NULL;

这里可以看到,指针的定义方式是: type + *
其实:
char* 类型的指针是为了存放 char 类型变量的地址。
short* 类型的指针是为了存放 short 类型变量的地址。
int* 类型的指针是为了存放 int 类型变量的地址。

那指针类型的意义是什么?

2.1 指针+-整数

#include <stdio.h>
//演示实例
int main()
{
    int n = 10;
    char *pc = (char*)&n;
    int *pi = &n;

    printf("%p\n", &n);
    printf("%p\n", pc);
    printf("%p\n", pc+1);
    printf("%p\n", pi);
    printf("%p\n", pi+1);
    return  0;
}

总结:指针的类型决定了指针向前或者向后走一步有多大(距离)。

2.2 指针的解引用

//演示实例
#include <stdio.h>

int main()
{
    int n = 0x11223344;
    char *pc = (char *)&n;
    int *pi = &n;
    *pc = 0;  //重点在调试的过程中观察内存的变化。
    *pi = 0;  //重点在调试的过程中观察内存的变化。
    return 0;
}

总结:
指针的类型决定了,对指针解引用的时候有多大的权限(能操作几个字节)。
比如: char* 的指针解引用就只能访问一个字节,而 int* 的指针的解引用就能访问四个字节。

3. 野指针


概念: 野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

3.1 野指针成因

1. 指针未初始化

#include <stdio.h>
int main()
{
    int *p;//局部变量指针未初始化,默认为随机值
    *p = 20;
    return 0;
}

2. 指针越界访问

#include <stdio.h>
int main()
{
    int arr[10] = {0};
    int *p = arr;
    int i = 0;
    for(i=0; i<=11; i++)
    {
        //当指针指向的范围超出数组arr的范围时,p就是野指针
        *(p++) = i;
    }
    return 0;
}

3. 指针指向的空间释放
    这里放在动态内存开辟的时候讲解,这里可以简单提示一下。

3.2 如何规避野指针

  1. 指针初始化
  2. 小心指针越界
  3. 指针指向空间释放,及时置NULL
  4.  避免返回局部变量的地址
  5. 指针使用之前检查有效性
#include <stdio.h>
int main()
{
    int *p = NULL;
    //....
    int a = 10;
    p = &a;
    if(p != NULL)
    {
        *p = 20;
    }
    return 0;
}

4. 指针运算

  • 指针+- 整数
  • 指针-指针
  • 指针的关系运算

4.1 指针+-整数

#define N_VALUES 5
float values[N_VALUES];
float *vp;
//指针+-整数;指针的关系运算
for (vp = &values[0]; vp < &values[N_VALUES];)
{
    *vp++ = 0;
}

4.2 指针-指针

for(vp = &values[N_VALUES]; vp > &values[0];)
{
    *--vp = 0;
}

4.3 指针的关系运算

for(vp = &values[N_VALUES]; vp > &values[0];)
{
    *--vp = 0;
}

代码简化, 这将代码修改如下:

for(vp = &values[N_VALUES-1]; vp >= &values[0];vp--)
{
    *vp = 0;
}

实际在绝大部分的编译器上是可以顺利完成任务的,然而我们还是应该避免这样写,因为标准并不保证它可行。

标准规定:

允许指向数组元素的指针与指向数组最后一个元素后面的那个内存位置的指针比较,但是不允许与指向第一个元素之前的那个内存位置的指针进行比较。

5. 指针和数组


我们看一个例子:

#include <stdio.h>
int main()
{
    int arr[10] = {1,2,3,4,5,6,7,8,9,0};
    printf("%p\n", arr);
    printf("%p\n", &arr[0]);
    return 0;
}

运行结果:

可见数组名和数组首元素的地址是一样的。
结论:数组名表示的是数组首元素的地址。(2种情况除外,数组章节讲解了)
那么这样写代码是可行的:

int arr[10] = {1,2,3,4,5,6,7,8,9,0};
int *p = arr;//p存放的是数组首元素的地址

既然可以把数组名当成地址存放到一个指针中,我们使用指针来访问一个就成为可能。
例如:

#include <stdio.h>
int main()
{
    int arr[] = {1,2,3,4,5,6,7,8,9,0};
    int *p = arr; //指针存放数组首元素的地址
    int sz = sizeof(arr)/sizeof(arr[0]);
    for(i=0; i<sz; i++)
    {
        printf("&arr[%d] = %p  <====> p+%d = %p\n", i, &arr[i], i, p+i);
    }
    return 0;
}

所以 p+i 其实计算的是数组 arr 下标为i的地址。
那我们就可以直接通过指针来访问数组。
如下:

int main()
{
    int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    int *p = arr; //指针存放数组首元素的地址
    int sz = sizeof(arr) / sizeof(arr[0]);
    int i = 0;
    for (i = 0; i<sz; i++)
    {
        printf("%d ", *(p + i));
    }
    return 0;
}

6. 二级指针


指针变量也是变量,是变量就有地址,那指针变量的地址存放在哪里?
这就是 二级指针

对于二级指针的运算有:

  • *ppa 通过对ppa中的地址进行解引用,这样找到的是 pa*ppa 其实访问的就是 pa .
int b = 20;
*ppa = &b;//等价于 pa = &b;
  • **ppa 先通过 *ppa 找到 pa ,然后对 pa 进行解引用操作: *pa ,那找到的是 a .
**ppa = 30;
//等价于*pa = 30;
//等价于a = 30;

7. 指针数组

指针数组是指针还是数组?
答案:是数组。是存放指针的数组。
数组我们已经知道整形数组,字符数组。

int arr1[5];
char arr2[6];

那指针数组是怎样的?

int* arr3[5];//是什么?

arr3是一个数组,有五个元素,每个元素是一个整形指针。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331386.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

向量投影:如何将一个向量投影到矩阵的行向量生成子空间?

向量投影&#xff1a;如何将一个向量投影到矩阵的行向量生成子空间&#xff1f; 前言 本问题是在学习Rosen梯度投影优化方法的时候遇到的问题&#xff0c;主要是对于正交投影矩阵(NT(NNT)-1N)的不理解&#xff0c;因此经过查阅资料&#xff0c;学习了关于向量投影的知识&…

MySQL——复合查询

目录 一.基本查询回顾 二. 多表查询 三.自连接 四.子查询 1.单行子查询 2.多行子查询 3.多列子查询 4.在from子句中使用子查询 5.合并查询 一.基本查询回顾 准备数据库&#xff1a; 查询工资高于500或岗位为MANAGER的雇员&#xff0c;同时还要满足他们的姓名首字母为…

欠采样对二维相位展开的影响

1.前言 如前所述&#xff0c;相位展开器通过计算两个连续样本之间的差来检测图像中包裹的存在。如果这个差值大于π或小于-π&#xff0c;则相位展开器认为在这个位置存在包裹。这可能是真正的相位包络&#xff0c;也可能是由噪声或采样不足引起的伪包络。 对欠采样的相位图像…

Flink面试题与详解

Flink面试题目合集 从牛客网上找到的一些面试题&#xff0c;如果还有其他的&#xff0c;欢迎大家补充。 1、能否详细描述下Apache Flink的架构组件和其工作原理&#xff1f;请介绍一下Flink on YARN部署模式的工作原理。 官网图&#xff1a; 由两个部分组成&#xff0c;JM&am…

使用Velero备份、恢复k8s集群上的资源

一、Velero简介 Velero提供备份和恢复 Kubernetes 集群资源和持久卷的工具。 Velero功能&#xff1a; 对群集进行备份&#xff0c;并在丢失时进行还原。将集群资源迁移到其他集群。 Velero 包括&#xff1a; 在群集上运行的服务器在本地运行的命令行客户端 开源地址&…

CAD制图

CAD制图 二维到三维 文章目录 CAD制图前言一、CAD制图二、机械设计三、二维图纸四、三维图纸总结前言 CAD制图可以提高设计效率和准确性,并方便文档的存档和交流,是现代工程设计中不可或缺的一部分。 一、CAD制图 CAD(Computer-Aided Design)是利用计算机技术辅助进行设计…

DoIP学习笔记系列:(七)doipclient测试工具安装使用说明

文章目录 优点doipclient简介安装部署环境准备安装doipclient安装python-uds测试传送门 DoIP学习笔记系列:导航篇 在DoIP的开发测试过程中,一般是用CANoe+VN5620+cdd的方式测试,此种方式对熟悉CANoe使用的小伙伴非常友好,调试方便,稳定性也不错,那有没有其他的方式呢?比…

ubuntu保存分辨率失效解决办法

在VM虚拟机中&#xff0c;遇到修改ubuntu分辨率后&#xff0c;重启后又重置的解决办法。 目前我的ubuntu版本是&#xff1a;ubuntu 18.04.6 版本。 1.首先&#xff0c;在你喜欢的目录建立一个.sh 脚本文件。 终端执行命令&#xff1a;sudo vim xrandr.sh 2.按 i 进入编辑状…

ARM 点灯

.text .global _start _start: led1设置GPIOE时钟使能 RCC_MP_AHB4ENSETR[4]->1 0X50000A28LDR R0,0X50000A28 指定寄存器地址LDR R1,[R0] 将寄存器数值取出来放在R1中ORR R1,R1,#(0x1<<4) 将第4位设置为1STR R1,[R0] 将修改后的值写回去设置PE10为输出 GPIOE…

Prometheus API 使用介绍|收藏

​ &#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试…

Microsoft edge浏览器对比谷歌浏览器 edge浏览器好用吗 edge浏览器怎么更换主页

近年来&#xff0c;由于谷歌浏览器的垄断&#xff0c;许多人都已经习惯于使用谷歌浏览器。随着互联网的普及&#xff0c;浏览器成为了人们上网必备的工具之一。而近年来&#xff0c;微软公司推出的 Microsoft Edge 浏览器备受关注。那么&#xff0c;Microsoft Edge 浏览器真的好…

2. 结构型模式 - 桥接模式

亦称&#xff1a; Bridge 意图 桥接模式是一种结构型设计模式&#xff0c; 可将一个大类或一系列紧密相关的类拆分为抽象和实现两个独立的层次结构&#xff0c; 从而能在开发时分别使用 问题 抽象&#xff1f; 实现&#xff1f; 听上去挺吓人&#xff1f; 让我们慢慢来&#x…

PyQt5设计一个简单的抽奖系统

PyQt5抽奖系统 程序运行截图 抽奖系统代码 该系统使用PyQt5模块以及openpyxl模块开发&#xff0c;需要使用pip安装导入PyQt5模块和openpyxl模块 import random, sys from PyQt5.QtWidgets import QWidget, QFormLayout, QLineEdit, QVBoxLayout, QApplication, QPushButton,…

2023年Top5搭建帮助中心工具集锦

随着企业知识管理的不断深化&#xff0c;帮助中心成为了一个越来越重要的组成部分。帮助中心是一个集成了企业知识、FAQ、常见问题解答、教程、使用指南等内容的在线平台&#xff0c;旨在为用户提供快速、准确的问题解答和自助服务。那么在这一年&#xff0c;有哪些搭建帮助中心…

汽车级EEPROM 存储器 M24C64-DRMN3TP/K是电可擦除可编程只读存储器?它的功能特性有哪些?

M24C64-DRMN3TP/K是一款64 Kbit串行EEPROM汽车级设备&#xff0c;工作温度高达125C。符合汽车标准AEC-Q100 1级规定的极高可靠性。 该设备可通过一个高达1MHz的简单串行I2C兼容接口访问。 存储器阵列基于先进的真EEPROM技术&#xff08;电可擦除可编程存储器&#xff09;。M2…

Java多线程技术四——定时器(备份)

1 定时器的使用 在JDK库中Timer类主要负责计划任务的功能&#xff0c;也就是在指定的时间开始执行某一个任务&#xff0c;Timer类的方法列表如下&#xff1a; Timer类的主要作用就是设置计划任务&#xff0c;封装任务的类却是TimerTask&#xff0c;该类的结构如下图 因为TimerT…

UGC编辑器开发-代码实现物体旋转操作轴

1.视频效果&#xff1a; 工程百度网盘链接&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1OYkt2T3Wv_Hh0Bt7nLyR-A 提取码&#xff1a;1212 2.设计思路&#xff1a; 我们从鼠标点击的屏幕坐标打出一根射线&#xff0c;求出射线和旋转面的交点&#xff0c;交点减去原…

【大数据HA】HAProxy实现thrift协议HMS服务的高可用-附Chatgpt协助截图

背景 之前安装了HMS(Hive metastore service)&#xff0c;独立于hive运行&#xff0c;安装部署过程见我下面列出的另一篇文章&#xff0c;需要为它建立HA高可用功能。防止在访问时出现单点故障问题。 【大数据】Docker部署HMS(Hive Metastore Service)并使用Trino访问Minio-C…

PADS Layout安全间距检查报错

问题&#xff1a; 在Pads Layout完成layout后&#xff0c;进行工具-验证设计安全间距检查时&#xff0c;差分对BAK_FIXCLK_100M_P / BAK_FIXCLK_100M_N的安全间距检查报错&#xff0c;最小为3.94mil&#xff0c;但是应该大于等于5mil&#xff1b;如下两张图&#xff1a; 检查&…

Docker安装(CentOS)+简单使用

Docker安装(CentOS) 一键卸载旧的 sudo yum remove docker* 一行代码(自动安装) 使用官方安装脚本 curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 启动 docker并查看状态 运行镜像 hello-world docker run hello-world 简单使用 使用 docker run …