05-垃圾收集器ParNewCMS与底层三色标记算法详解

news2025/2/6 5:51:35

文章目录

  • 垃圾收集算法
    • 分代收集理论
    • 标记-复制算法
    • 标记-清除算法
    • 标记-整理算法
  • 垃圾收集器
    • Serial收集器
    • Parallel Scavenge收集器
    • ParNew收集器
    • CMS收集器
  • CMS的相关核心参数
    • 亿级流量电商系统如何优化JVM参数设置(ParNew+CMS)
  • 垃圾收集底层算法实现
    • 三色标记
    • 多标-浮动垃圾
    • 漏标-读写屏障
      • 写屏障
      • 读屏障
    • 记忆集与卡表
      • 卡表的维护

垃圾收集算法


在这里插入图片描述

分代收集理论

当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
比如在新生代中,每次收集都会有大量对象(近99%)死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。注意,“标记-清除”或“标记-整理”算法会比复制算法慢10倍以上。

标记-复制算法

为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。
在这里插入图片描述

标记-清除算法

算法分为“标记”和“清除”阶段:标记存活的对象, 统一回收所有未被标记的对象(一般选择这种);也可以反过来,标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象 。它是最基础的收集算法,比较简单,但是会带来两个明显的问题:
效率问题 (如果需要标记的对象太多,效率不高)
空间问题(标记清除后会产生大量不连续的碎片)
在这里插入图片描述

标记-整理算法

根据老年代的特点推出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。
在这里插入图片描述

垃圾收集器


在这里插入图片描述

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。
虽然我们对各个收集器进行比较,但并非为了挑选出一个最好的收集器。因为直到现在为止还没有最好的垃圾收集器出现,更加没有万能的垃圾收集器,我们能做的就是根据具体应用场景选择适合自己的垃圾收集器。试想一下:如果有一种四海之内、任何场景下都适用的完美收集器存在,那么我们的Java虚拟机就不会实现那么多不同的垃圾收集器了。

Serial收集器

-XX:+UseSerialGC      //年轻代
-XX:+UseSerialOldGC   //老年代

Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( “Stop The World” ),直到它收集结束。
新生代采用复制算法,老年代采用标记-整理算法
在这里插入图片描述

虚拟机的设计者们当然知道Stop The World带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。
但是Serial收集器有没有优于其他垃圾收集器的地方呢?当然有,它简单而高效(与其他收集器的单线程相比)。Serial收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。
Serial Old收集器是Serial收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在JDK1.5以及以前的版本中与Parallel Scavenge收集器搭配使用,另一种用途是作为CMS收集器的后备方案

Parallel Scavenge收集器

-XX:+UseParallelGC    //年轻代
-XX:+UseParallelOldGC //老年代

Parallel收集器其实就是Serial收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和Serial收集器类似。默认的收集线程数跟cpu核数相同,当然也可以用参数(-XX:ParallelGCThreads)指定收集线程数,但是一般不推荐修改。

Parallel Scavenge收集器关注点是吞吐量(高效率的利用CPU)。CMS等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是CPU中用于运行用户代码的时间与CPU总消耗时间的比值。 Parallel Scavenge收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解的话,可以选择把内存管理优化交给虚拟机去完成也是一个不错的选择。
新生代采用复制算法,老年代采用标记-整理算法。
在这里插入图片描述

**Parallel Old收集器是Parallel Scavenge收集器的老年代版本。**使用多线程和“标记-整理”算法。在注重吞吐量以及CPU资源的场合,都可以优先考虑 Parallel Scavenge收集器和Parallel Old收集器(JDK1.8默认的新生代和老年代收集器)。

ParNew收集器

-XX:+UseParNewGC

ParNew收集器其实跟Parallel收集器很类似,区别主要在于它可以和CMS收集器配合使用。
新生代采用复制算法
在这里插入图片描述

它是许多运行在Server模式下的虚拟机的首要选择,除了Serial收集器外,只有它能与CMS收集器(真正意义上的并发收集器,后面会介绍到)配合工作。

CMS收集器

-XX:+UseConcMarkSweepGC  //old

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用,它是HotSpot虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。
从名字中的Mark Sweep这两个词可以看出,CMS收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  • 初始标记: 暂停所有的其他线程(STW),并记录下gc roots直接能引用的对象,速度很快
  • 并发标记: 并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程, 这个过程耗时较长但是不需要停顿用户线程, 可以与垃圾收集线程一起并发运行。因为用户程序继续运行,可能会有导致已经标记过的对象状态发生改变。
  • 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录(主要是处理漏标问题),这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短。主要用到三色标记里的增量更新算法(见下面详解)做重新标记
  • 并发清理: 开启用户线程,同时GC线程开始对未标记的区域做清扫。这个阶段如果有新增对象会被标记为黑色不做任何处理(见下面三色标记算法详解)。
  • 并发重置:重置本次GC过程中的标记数据。
    在这里插入图片描述

从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面几个明显的缺点:

  • 对CPU资源敏感(会和服务抢资源);
  • 无法处理浮动垃圾(在并发标记和并发清理阶段又产生垃圾,这种浮动垃圾只能等到下一次gc再清理了);
  • 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生,当然通过参数-XX:+UseCMSCompactAtFullCollection可以让jvm在执行完标记清除后再做整理
  • 执行过程中的不确定性,会存在上一次垃圾回收还没执行完,然后垃圾回收又被触发的情况,特别是在并发标记和并发清理阶段会出现,一边回收,系统一边运行,也许没回收完就再次触发full gc,也就是"concurrent mode failure",此时会进入stop the world,用serial old垃圾收集器来回收

CMS的相关核心参数

  1. -XX:+UseConcMarkSweepGC:启用cms
  2. -XX:ConcGCThreads:并发的GC线程数
  3. -XX:+UseCMSCompactAtFullCollection:FullGC之后做压缩整理(减少碎片)
  4. -XX:CMSFullGCsBeforeCompaction:多少次FullGC之后压缩一次,默认是0,代表每次FullGC后都会压缩一次
  5. -XX:CMSInitiatingOccupancyFraction: 当老年代使用达到该比例时会触发FullGC(默认是92,这是百分比)
  6. -XX:+UseCMSInitiatingOccupancyOnly:只使用设定的回收阈值
  7. -XX:CMSInitiatingOccupancyFraction设定的值),如果不指定,JVM仅在第一次使用设定值,后续则会自动调整
  8. -XX:+CMSScavengeBeforeRemark:在CMS GC前启动一次minor gc,降低CMS GC标记阶段(也会对年轻代一起做标记,如果在minor gc就干掉了很多对垃圾对象,标记阶段就会减少一些标记时间)时的开销,一般CMS的GC耗时 80%都在标记阶段
  9. -XX:+CMSParallellnitialMarkEnabled:表示在初始标记的时候多线程执行,缩短STW
  10. -XX:+CMSParallelRemarkEnabled:在重新标记的时候多线程执行,缩短STW;

亿级流量电商系统如何优化JVM参数设置(ParNew+CMS)

大型电商系统后端现在一般都是拆分为多个子系统部署的,比如,商品系统,库存系统,订单系统,促销系统,会员系统等等。
我们这里以比较核心的订单系统为例
在这里插入图片描述

对于8G内存,我们一般是分配4G内存给JVM,正常的JVM参数配置如下:

-Xms3072M -Xmx3072M -Xss1M -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M  -XX:SurvivorRatio=8

上节课说过,这样设置可能会由于动态对象年龄判断原则导致频繁full gc。
于是我们可以更新下JVM参数设置:

-Xms3072M -Xmx3072M -Xmn2048M -Xss1M -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M  -XX:SurvivorRatio=8

在这里插入图片描述
这样就降低了因为对象动态年龄判断原则导致的对象频繁进入老年代的问题,其实很多优化无非就是让短期存活的对象尽量都留在survivor里,不要进入老年代,这样在minor gc的时候这些对象都会被回收,不会进到老年代从而导致full gc
对于对象年龄应该为多少才移动到老年代比较合适,本例中一次minor gc要间隔二三十秒,大多数对象一般在几秒内就会变为垃圾,完全可以将默认的15岁改小一点,比如改为5,那么意味着对象要经过5次minor gc才会进入老年代,整个时间也有一两分钟了,如果对象这么长时间都没被回收,完全可以认为这些对象是会存活的比较长的对象,可以移动到老年代,而不是继续一直占用survivor区空间。
对于多大的对象直接进入老年代(参数-XX:PretenureSizeThreshold),这个一般可以结合你自己系统看下有没有什么大对象生成,预估下大对象的大小,一般来说设置为1M就差不多了,很少有超过1M的大对象,这些对象一般就是你系统初始化分配的缓存对象,比如大的缓存List,Map之类的对象。
可以适当调整JVM参数如下:

-Xms3072M -Xmx3072M -Xmn2048M -Xss1M  -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M  -XX:SurvivorRatio=8 
-XX:MaxTenuringThreshold=5 -XX:PretenureSizeThreshold=1M

对于JDK8默认的垃圾回收器是-XX:+UseParallelGC(年轻代)和-XX:+UseParallelOldGC(老年代),如果内存较大(超过4个G,只是经验值),系统对停顿时间比较敏感,我们可以使用ParNew+CMS(-XX:+UseParNewGC -XX:+UseConcMarkSweepGC)
对于老年代CMS的参数如何设置我们可以思考下,首先我们想下当前这个系统有哪些对象可能会长期存活躲过5次以上minor gc最终进入老年代。
无非就是那些Spring容器里的Bean,线程池对象,一些初始化缓存数据对象等,这些加起来充其量也就几十MB。
还有就是某次minor gc完了之后还有超过一两百M的对象存活,那么就会直接进入老年代,比如突然某一秒瞬间要处理五六百单,那么每秒生成的对象可能有一百多M,再加上整个系统可能压力剧增,一个订单要好几秒才能处理完,下一秒可能又有很多订单过来。
我们可以估算下大概每隔五六分钟出现一次这样的情况,那么大概半小时到一小时之间就可能因为老年代满了触发一次Full GC,Full GC的触发条件还有我们之前说过的老年代空间分配担保机制,历次的minor gc挪动到老年代的对象大小肯定是非常小的,所以几乎不会在minor gc触发之前由于老年代空间分配担保失败而产生full gc,其实在半小时后发生full gc,这时候已经过了抢购的最高峰期,后续可能几小时才做一次FullGC。
对于碎片整理,因为都是1小时或几小时才做一次FullGC,是可以每做完一次就开始碎片整理,或者两到三次之后再做一次也行。
综上,只要年轻代参数设置合理,老年代CMS的参数设置基本都可以用默认值,如下所示:

-Xms3072M -Xmx3072M -Xmn2048M -Xss1M  -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M  -XX:SurvivorRatio=8 
-XX:MaxTenuringThreshold=5 -XX:PretenureSizeThreshold=1M -XX:+UseParNewGC -XX:+UseConcMarkSweepGC 
-XX:CMSInitiatingOccupancyFraction=92 -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=3

垃圾收集底层算法实现


三色标记

在并发标记的过程中,因为标记期间应用线程还在继续跑,对象间的引用可能发生变化,多标和漏标的情况就有可能发生。漏标的问题主要引入了三色标记算法来解决。
三色标记算法是把Gc roots可达性分析遍历对象过程中遇到的对象, 按照“是否访问过”这个条件标记成以下三种颜色:

  • 黑色: 表示对象已经被垃圾收集器访问过, 且这个对象的所有引用都已经扫描过。 黑色的对象代表已经扫描过, 它是安全存活的, 如果有其他对象引用指向了黑色对象, 无须重新扫描一遍。 黑色对象不可能直接(不经过灰色对象) 指向某个白色对象。
  • 灰色: 表示对象已经被垃圾收集器访问过, 但这个对象上至少存在一个引用还没有被扫描过。
  • 白色: 表示对象尚未被垃圾收集器访问过。 显然在可达性分析刚刚开始的阶段, 所有的对象都是白色的, 若在分析结束的阶段, 仍然是白色的对象, 即代表不可达。
    在这里插入图片描述
/**
 * 垃圾收集算法细节之三色标记
 * 为了简化例子,代码写法可能不规范,请忽略
 */
public class ThreeColorRemark {

    public static void main(String[] args) {
        A a = new A();
        //开始做并发标记
        D d = a.b.d;   // 1.读
        a.b.d = null;  // 2.写
        a.d = d;       // 3.写
    }
}

class A {
    B b = new B();
    D d = null;
}

class B {
    C c = new C();
    D d = new D();
}

class C {
}

class D {
}

多标-浮动垃圾

在并发标记过程中,如果由于方法运行结束导致部分局部变量(gcroot)被销毁,这个gcroot引用的对象之前又被扫描过(被标记为非垃圾对象),那么本轮GC不会回收这部分内存。这部分本应该回收但是没有回收到的内存,被称之为“浮动垃圾”。浮动垃圾并不会影响垃圾回收的正确性,只是需要等到下一轮垃圾回收中才被清除。
另外,针对并发标记(还有并发清理)开始后产生的新对象,通常的做法是直接全部当成黑色,本轮不会进行清除。这部分对象期间可能也会变为垃圾,这也算是浮动垃圾的一部分。

漏标-读写屏障

漏标会导致被引用的对象被当成垃圾误删除,这是严重bug,必须解决,有两种解决方案: 增量更新(Incremental Update) 和原始快照(Snapshot At The Beginning,SATB)
增量更新就是当黑色对象插入新的指向白色对象的引用关系时, 就将这个新插入的引用记录下来, 等并发扫描结束之后, 再将这些记录过的引用关系中的黑色对象为根, 重新扫描一次。 这可以简化理解为, 黑色对象一旦新插入了指向白色对象的引用之后, 它就变回灰色对象了。
原始快照就是当灰色对象要删除指向白色对象的引用关系时, 就将这个要删除的引用记录下来,在并发扫描结束之后, 再将这些记录过的引用关系中的灰色对象为根, 重新扫描一次,这样就能扫描到白色的对象,将白色对象直接标记为黑色(目的就是让这种对象在本轮gc清理中能存活下来,待下一轮gc的时候重新扫描,这个对象也有可能是浮动垃圾)
以上无论是对引用关系记录的插入还是删除, 虚拟机的记录操作都是通过写屏障实现的。

写屏障

给某个对象的成员变量赋值时,其底层代码大概长这样:

/**
* @param field 某对象的成员变量,如 a.b.d 
* @param new_value 新值,如 null
*/
void oop_field_store(oop* field, oop new_value) { 
    *field = new_value; // 赋值操作
} 

所谓的写屏障,其实就是指在赋值操作前后,加入一些处理(可以参考AOP的概念):

void oop_field_store(oop* field, oop new_value) {  
    pre_write_barrier(field);          // 写屏障-写前操作
    *field = new_value; 
    post_write_barrier(field, value);  // 写屏障-写后操作
}
  • 写屏障实现SATB
    当对象B的成员变量的引用发生变化时,比如引用消失(a.b.d = null),我们可以利用写屏障,将B原来成员变量的引用对象D记录下来:
void pre_write_barrier(oop* field) {
    oop old_value = *field;    // 获取旧值
    remark_set.add(old_value); // 记录原来的引用对象
}
  • 写屏障实现增量更新
    当对象A的成员变量的引用发生变化时,比如新增引用(a.d = d),我们可以利用写屏障,将A新的成员变量引用对象D记录下来:
void post_write_barrier(oop* field, oop new_value) {  
    remark_set.add(new_value);  // 记录新引用的对象
}

读屏障

oop oop_field_load(oop* field) {
    pre_load_barrier(field); // 读屏障-读取前操作
    return *field;
}

读屏障是直接针对第一步:D d = a.b.d,当读取成员变量时,一律记录下来:

void pre_load_barrier(oop* field) {  
    oop old_value = *field;
    remark_set.add(old_value); // 记录读取到的对象
}

现代追踪式(可达性分析)的垃圾回收器几乎都借鉴了三色标记的算法思想,尽管实现的方式不尽相同:比如白色/黑色集合一般都不会出现(但是有其他体现颜色的地方)、灰色集合可以通过栈/队列/缓存日志等方式进行实现、遍历方式可以是广度/深度遍历等等。
对于读写屏障,以Java HotSpot VM为例,其并发标记时对漏标的处理方案如下:

  • CMS:写屏障 + 增量更新
  • G1,Shenandoah:写屏障 + SATB
  • ZGC:读屏障
    工程实现中,读写屏障还有其他功能,比如写屏障可以用于记录跨代/区引用的变化,读屏障可以用于支持移动对象的并发执行等。功能之外,还有性能的考虑,所以对于选择哪种,每款垃圾回收器都有自己的想法。

为什么G1用SATB?CMS用增量更新?
个人理解:SATB相对增量更新效率会高(当然SATB可能造成更多的浮动垃圾),因为不需要在重新标记阶段再次深度扫描被删除引用对象,而CMS对增量引用的根对象会做深度扫描,G1因为很多对象都位于不同的region,CMS就一块老年代区域,重新深度扫描对象的话G1的代价会比CMS高,所以G1选择SATB不深度扫描对象,只是简单标记,等到下一轮GC再深度扫描。

记忆集与卡表

在新生代做GCRoots可达性扫描过程中可能会碰到跨代引用的对象,这种如果又去对老年代再去扫描效率太低了。
为此,在新生代可以引入记录集(Remember Set)的数据结构(记录从非收集区到收集区的指针集合),避免把整个老年代加入GCRoots扫描范围。事实上并不只是新生代、 老年代之间才有跨代引用的问题, 所有涉及部分区域收集(Partial GC) 行为的垃圾收集器, 典型的如G1、 ZGC和Shenandoah收集器, 都会面临相同的问题。
垃圾收集场景中,收集器只需通过记忆集判断出某一块非收集区域是否存在指向收集区域的指针即可,无需了解跨代引用指针的全部细节。
hotspot使用一种叫做“卡表”(Cardtable)的方式实现记忆集,也是目前最常用的一种方式。关于卡表与记忆集的关系, 可以类比为Java语言中HashMap与Map的关系。
卡表是使用一个字节数组实现:CARD_TABLE[ ],每个元素对应着其标识的内存区域一块特定大小的内存块,称为“卡页”。
hotSpot使用的卡页是2^9大小,即512字节
在这里插入图片描述

一个卡页中可包含多个对象,只要有一个对象的字段存在跨代指针,其对应的卡表的元素标识就变成1,表示该元素变脏,否则为0。
GC时,只要筛选本收集区的卡表中变脏的元素加入GCRoots里。

卡表的维护

卡表变脏上面已经说了,但是需要知道如何让卡表变脏,即发生引用字段赋值时,如何更新卡表对应的标识为1。

Hotspot使用写屏障维护卡表状态。

文章编写不易,动动发财的小手点个关注吧😊
文章编写不易,动动发财的小手点个关注吧😊
文章编写不易,动动发财的小手点个关注吧😊

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1328018.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

理解Spring中bean的作用域

singleton:Spring Ioc容器中只会存在一个共享的Bean实例,无论有多少个Bean引用它,始终指向同一个对象,作用域为Spring中的缺省(同一package)作用域 prototype:每次通过Spring容器获取prototype定义的bean时&#xff0c…

融资项目——vue之数据绑定

如上图,当变量{{title}}不在标签内的时候,vue可以正常渲染,点击链接后可正常跳转到百度。但如下图,如果{{title}}在标签内,则此时会产生错误,点击链接后并没有如愿跳转到百度页面。 此时,需要使…

27. 过滤器

Filter(过滤器)简介 Filter 的基本功能是对 Servlet 容器调用 Servlet 的过程进行拦截,从而在 Servlet 进行响应处理的前后实现一些特殊的功能。在 Servlet API 中定义了三个接口类来开供开发人员编写 Filter 程序:Filter, FilterChain, FilterConfigFi…

如何开发专属花店展示平台小程序?

如今,微信小程序已经成为了花店行业拓展客户资源的重要工具。通过开发一个专属花店小程序,你可以为自己的花店带来更多的曝光和客户资源。那么,如何开发一个专属花店小程序呢?接下来,我们将一步步为你详细讲解。 首先&…

共建还是对抗?BTC 铭文风波中开发者、矿工与社区的平衡艺术

近期,比特币铭文正加速进入一场争议与危机的漩涡。12 月 6 日,比特币核心开发人员 Luke Dashjr 在 X 表示,铭文(Inscriptions)正在利用比特币核心客户端 Bitcoin Core 的一个漏洞向区块链发送垃圾信息,Bitc…

“智”绘出海新航道,亚马逊云科技携手涂鸦智能助力智能家居企业全球化

随着人工智能、5G等技术的快速发展,智能家居行业呈现高速发展的态势。Statista数据显示,2022年全球智能家居行业支出总值为1145亿美元,欧美地区以较早的智能家居普及率,率先进入全屋智能时代,其中欧盟区国家家用智能设…

阿里云赵大川:弹性计算推理解决方案拯救 AIGC 算力危机

云布道师 本篇文章围绕弹性计算推理解决方案 DeepGPU 实例如何支持 Stable Diffusion 文生图推理、Stable Diffusion 推理演示示例等相关话题展开。 赵大川 阿里云弹性计算高级技术专家 GPU 云服务器推理解决方案的提出背景 随着 AIGC 时代的到来,两个重要应用应…

水利水库大坝安全监测参数详解

变形监测 变形监测是指对工程结构或地质环境中的变形进行实时或定期的测量与监测的过程。变形监测的目的是为了及时了解结构或环境的变形情况,评估其稳定性和安全性,并采取相应的措施来预防灾害和保护人民生命财产安全。 变形监测主要包括的内容有&#…

管理层年终考核的四种方式

企业管理层是企业中的核心决策者,对企业的经营和发展有着重要的影响。因此,对企业管理层进行年终绩效环评可以更好地了解其对企业的贡献和影响,以便更好地激励和管理管理层,提高企业的绩效和效益。以下是适合管理层做年终考核的四…

数学建模笔记-拟合算法

内容:拟合算法 一.概念: 拟合的结果就是找到一个确定的曲线 二.最小二乘法: 1. 2.最小二乘法的二表示的是平方的那个2 3.求解最小二乘法: 三.评价拟合的好坏 1.总体评分和SST: 2.误差平方和SSE: 3.回…

数字滤波器的设计

一般滤波器可以分为经典滤波器和数字滤波器。 经典滤波器:假定输入信号中的有用成分和希望去除的成分各自占有不同的频带。如果信号和噪声的频谱相互重迭,经典滤波器无能为力。比如 FIR 和 IIR 滤波器等。  现代滤波器:从含有噪声的时间序…

HEA---code

import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.animation import FuncAnimationfrom matplotlib.offsetbox import OffsetImage, AnnotationBbox# 创建一个画布和坐标轴对象 fig, ax plt.subplots() # 创建一个参数t,范围是0到2π t np.lins…

Elasticsearch Reroute API 的使用

本文通过一个 Elasticsearch 集群中主分片分配不均衡的例子演示一下 Cluster reroute API 的使用。 对于 Elasticsearch 分片分配策略不了解的同学可以点一下关注,后面更文之后获取第一手资料。 环境信息 Windows 10 Elasticsearch 8.1 JDK17 初始集群状态 分片…

IspSrver-DNS

2023年全国网络系统管理赛项真题 模块B-Windows解析 题目 安装DNS服务器,根据题目创建必要正向区域和反向区域的DNS解析。把当前机器作为互联网根域服务器,创建test1.com~test100.com,并在所有正向区域中创建一条A记录,解析到本机地址。配置步骤 安装DNS服务器,根据题目创…

智能感知时代已来,汉威科技柔性传感器迎来发展新机遇

近年来,消费电子、医疗健康、智能汽车、人机交互等领域的黑科技产品不断出现,催生了许多新功能、新场景、新市场。 TWS耳机:许多TWS(真无线立体声)耳机厂商开始摒弃传统的触摸感应模式,转而采用最先进的压…

Jenkins 构建触发器指南

目录 触发远程构建 (例如,使用脚本) 描述 配置步骤 安全令牌 在其他项目构建完成后触发构建 描述 配置步骤 定时触发构建 描述 配置步骤 GitHub钩子触发GITScm轮询 描述 配置步骤 Poll SCM - 轮询版本控制系统 描述 触发远程构建 (例如,使…

国产低成本Wi-Fi SoC解决方案芯片ESP8266与ESP8285对比差异

目录 ESP8266与ESP8285对比差异微信号:dnsj5343ESP8285简介ESP8285 主要特性Wi-Fi特性射频模块CPU特性硬件软件 ES8285 8266通用开发板 ESP8266与ESP8285对比差异 ESP8285相当于在ESP8266基础上多加了1/2MB Flash, ESP8285与ESP8266同用一套SDK&#xf…

1.使用 Blazor 利用 ASP.NET Core 生成第一个 Web 应用

参考 https://dotnet.microsoft.com/zh-cn/learn/aspnet/blazor-tutorial/create 1.使用vs2022创建新项目 选择 C# -> Windows -> Blzxor Server 应用模板 2.项目名称BlazorApp下一步 3.选择 .NET6.0 或 .NET7.0 或 .NET8.0 创建 4.运行BlazorApp 5.全部选择是。 信…

APEX后台弱密码增强改造出现的问题及解决方法

为了加强APEX后台密码的安全性和可靠性,对其进行弱密码改造,通过改写登录函数,判断密码可靠性,在密码不符合条件(密码长度必须大于8位小于16位,其包含数字、大小写字母与特殊符号)时跳转到密码修…

easyexcel复杂表头导出

easyexcel复杂表头导出 /*** ClassName ColumnWidthStyleStrategy* Description: excel导出列长度**/ public class ExcelWidthStyleStrategy extends AbstractColumnWidthStyleStrategy {private static final int MAX_COLUMN_WIDTH 200;private final Map<Integer, Map…