MySQL是如何保证数据不丢失的?

news2024/10/4 17:34:40

文章目录

  • 前言
  • Buffer Pool 和 DML 的关系
  • DML操作流程
    • 加载数据页
    • 更新记录
  • 数据持久化方案
    • 合适的时机刷盘
    • 双写机制
    • 日志先行机制
    • 日志刷盘机制
    • Redo Log 恢复数据
  • 总结

前言

上篇文章《InnoDB在SQL查询中的关键功能和优化策略》对InnoDB的查询操作和优化事项进行了说明。但是,MySQL作为一个存储数据的产品,怎么确保数据的持久性和不丢失才是最重要的,感兴趣的可以跟随本文一探究竟。

Buffer Pool 和 DML 的关系

InnoDB中的「Buffer Pool」除了在查询时起到提高效率作用,同样,在insert、update、delete这些DML操作时为了减少和磁盘的频繁交互,也会将这些更新先在Buffer Pool中缓存的数据页进行操作,随后将这些有更新的「脏页」刷到磁盘中。

这个时候就涉及到一个问题:如果MySQL服务宕机了,这些在内存中更新的数据会不会丢失?

答案是一定会存在丢失现象的,只不过MySQL做到了尽量不让数据丢失。接下来来看一下MySQL是怎么做的。

这里还是把结构图贴一下,方便下面介绍时看图理解。

在这里插入图片描述

DML操作流程

加载数据页

通过上文可以知道,行记录是在数据页中,所以,当InnoDB接收到DML操作请求后,还是会去找「数据页」,查找的过程跟上文查询行记录流程是一样。这里说一下,insert的请求会根据主键索引去找数据页,update、delete根据查询条件去找数据页,总之「数据页」要加载到「Buffer Pool」之后才会进行下一步操作。

更新记录

定位到数据页后,insert操作就是往数据页中添加一行记录,delete是标记一下行记录的‘删除标记’,而update则是先删除再添加,这是因为存在可变长的字段类型,比如varchar,每次更新时,这种类型的数据占用内存是不固定的,所以先删除再添加。

这里的删除标记是行记录的字段,也就是除了业务字段数据,InnoDB默认为每行记录添加的字段,所以一个行记录大概如下图,这也是之前提到过的「行格式」。

在这里插入图片描述

找到数据页并且更新记录之后DML操作就算完成了,但是还没有落地到磁盘。

这个时候直接刷新到磁盘视为完成不可以吗?

数据持久化方案

可以是可以,但是如果每次的DML操作都要将一个16KB的数据页刷到磁盘,其效率是极低的,估计也就没有人用MySQL了。但是如果不刷新到磁盘,就会发生MySQL服务宕机数据会丢失现象。MySQL在这里的处理方案是:

  1. 等待合适的时机将批量的「脏页」异步刷新到磁盘。
  2. 先快速将更新的记录以日志的形式刷新到磁盘。

先看第一点,什么时候是合适的时机?

合适的时机刷盘

当「脏页」在「Buffer Pool」中达到某个阈值的时候,InnoDB会将这些脏页刷新到磁盘中。这个阈值可以通过 innodb_max_dirty_pages_pct 这个参数查看或设置,相关命令如下:

-- 查看脏页刷新阈值
show variables like 'innodb_max_dirty_pages_pct'
-- 在线设置脏页刷新阈值,当脏页在Buffer Pool占用70%的时候刷新
SET GLOBAL innodb_max_dirty_pages_pct = 70

在这里插入图片描述

当然,这个合适的时机只是为了减少与磁盘的交互,用来提高性能的,并不能确保数据不丢失。

双写机制

在刷新「脏页」这里还有一个非常重要的注意事项就是:因为InnoDB的页大小为16KB,而一般操作系统的页大小为4KB。意味着InnoDB将这些「脏页」向磁盘刷新时,在操作系统层面会被分成4个4KB的页,这样的话,如果其中有一页因为MySQL宕机或者其他异常导致没有成功刷新到磁盘,就会出现「页损坏现象」,数据也就不完整了。

在这里插入图片描述

所以InnoDB在这里采用的双写机制,在将这些「脏页」刷新到磁盘之前先会往结构图中的「Doublewrite Buffer」中写入,随后再刷新到对应的表空间中,当出现故障时就可以通过双写缓冲区进行恢复。

向「Doublewrite Buffer」就不会发生「页损坏现象」?

Doublewrite Buffer」的大小是独立且固定的,不是基于页的大小来划分的。所以不受操作系统中的页大小限制,也不会发生「页损坏现象」。并且先以顺序IO的方式向「Doublewrite Buffer」写入数据页,再以随机IO异步刷新到表空间这种方式还可以提高写入性能。

在这里插入图片描述

再看第二点,为什么以日志的形式先刷新到磁盘?

日志先行机制

在「Buffer Pool」中更新完数据页后,由于不会及时将这些「脏页」刷新到磁盘,为了避免数据丢失,会将本次的DML操作向「Log Buffer」中写一份并且刷新到磁盘中,相比16KB的数据页来说,这个数据量会小很多,而且写入日志文件时是追加操作,属于顺序IO,效率较高。如下图,哪种方式写入效率更高是显而易见的。

在这里插入图片描述

这里说的日志文件就是经常会听到的「Redo Log」,即使MySQL宕机了,通过磁盘的redolog,也可以在MySQL启动时尽可能的将数据恢复到宕机之前样子。当然,还有「Undo Log」,因为对本文重点没有直接影响,所以不对此展开说明。

这种日志先行(WAL)的机制也是MySQL用于提高效率和保障数据可靠的一种方式。

为什么是尽可能的恢复?

日志刷盘机制

因为「Log Buffer」中的日志数据什么时候向磁盘刷新则是由 innodb_flush_log_at_trx_commitinnodb_flush_log_at_timeout 这两个参数决定的。

  • innodb_flush_log_at_trx_commit默认为1,也就是每次事务提交后就会刷新到磁盘。
  • innodb_flush_log_at_trx_commit设置为0时,则不会根据事务提交来刷新,而是根据innodb_flush_log_at_timeout设置的时间定时刷新,这个时间默认为1秒。
  • innodb_flush_log_at_trx_commit设置为2时,仅将日志写入操作系统中的缓存中,随后跟随根据innodb_flush_log_at_timeout定时刷新。

如果在MySQL服务宕机的时候,「Log Buffer」中的日志没有刷新到磁盘,这部分数据也是会丢失的,在重启后也不会恢复。所以如果不想丢失数据,在性能还可以的情况下,尽量将innodb_flush_log_at_trx_commit设置为1。

「redo log」是怎么恢复数据的?

Redo Log 恢复数据

首先,redo log会记录DML的操作类型、数据的表空间、数据页以及具体操作内容,以 insert into t1(1,'hi')为例,对应的redo log内容大概这样的

在这里插入图片描述

假如 innodb_flush_log_at_trx_commit 的值为1,那么当该DML操作事务提交后,就会将 redo log 刷新到磁盘。成功刷新到磁盘后,就可以视为数据被写入成功。

此时如果「脏页」还没刷新到磁盘便宕机,那么在下次MySQL启动时便去加载redo log,如果redo log存在数据则意味着需要恢复数据。这个时候就可以通过redo log中的内容重新构建「脏页」,从而恢复到宕机之前的状态。

怎么构建「脏页」呢?

其实在每次的redo log写入时都会记录一个「LSN(log sequence number)」,同时这个值在「数据页」中记录最后一次被修改的日志序列位置。MySQL在启动时通过LSN来对比 redo log 和数据页,如果数据页中的LSN小于 redo log 的LSN,则会将该数据页加载到「Buffer Pool」,然后根据 redo log 的内容构建出「脏页」,等待下次刷新到磁盘,数据也就恢复了。如下图

在这里插入图片描述

注意:这个恢复的过程重点在redo上,实际上还涉及到「Change Buffer」、「Undo Log」等操作,这里没有展开说明。

「Doublewrite Buffer」和「redo log」都是恢复数据的,不冲突吗?

不冲突,「Doublewrite Buffer」是对「页损坏现象」的整个数据页进行恢复,Redo Log只能对某次的DML操作进行恢复。

总结

InnoDB通过以上的操作可以尽可能的保证MySQL不丢失数据,最后再总结一下MySQL是如何保障数据不丢失的:

  1. 为了避免频繁与磁盘交互,每次DML操作先在「Buffer Pool」中的缓存页中执行,缓存页有更新之后便成为「脏页」,随后根据innodb_max_dirty_pages_pct这个参数将「脏页」刷新到磁盘。
  2. 因为「脏页」在刷新到磁盘之前可能会存在MySQL宕机等异常行为导致数据丢失,所以MySQL采用日志先行(WAL)机制,将DML操作以日志的形式进行记录到「Redo Log」中,随后根据innodb_flush_log_at_trx_commitinnodb_flush_log_at_timeout这两个参数将「Redo Log」刷新到磁盘,以便恢复。
  3. 在向磁盘刷新「脏页」时,为了避免发生「页损坏」现象,InnoDB采用双写机制,先将这些脏页顺序写入「Doublewrite Buffer」中,随后再将数据页异步刷新到各个表空间中,这种方式既能提高写入效率,又可以保障数据的完整性。
  4. 如果在「脏页」刷新到磁盘之前,MySQL宕机了,那么会在下次启动时通过 redo log 将脏页构建出来,做到数据恢复。
  5. 通过以上步骤,MySQL做到了尽可能的不丢失数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1326709.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32F4的DHT11初始化与实例分析

STM32—— DHT11 本文主要涉及STM32F4 的DHT11的使用以及相关时序的介绍,最后有工程下载地址。 文章目录 STM32—— DHT11一、 DHT11的介绍1.1 DHT11的经典电路 二、DHT11的通信2.1 DHT11的传输数据格式2.2 DHT11 通信分步解析 三、 DHT11 代码3.1 引脚图3.2 电路图…

污水处理厂可视化:让环保与科技共舞

随着科技的飞速发展,我们的生活环境变得越来越美好。然而,随着城市化进程的加快,污水处理问题也日益凸显。如何有效、高效地处理污水,成为了一个亟待解决的问题。而“污水处理厂可视化”技术的出现,为这个问题提供了一…

隐藏通信隧道技术——防御DNS隧道攻击

隐藏通信隧道技术——防御DNS隧道攻击 DNS协议 ​ DNS协议是一种请求/应答协议,也是一种可用于应用层的隧道技术。虽然激增的DNS流量可能会被发现,但是基于传统Socket隧道已经濒临淘汰及TCP、UDP通信大量被防御系统拦截的状况,DNS、ICMP、H…

第二十二章 : Spring Boot 集成定时任务(一)

第二十二章 : Spring Boot 集成定时任务(一) 前言 本章知识点: 介绍使用Spring Boot内置的Scheduled注解来实现定时任务-单线程和多线程;以及介绍Quartz定时任务调度框架:简单定时调度器(Simp…

QT中网络编程之发送Http协议的Get和Post请求

文章目录 HTTP协议GET请求POST请求QT中对HTTP协议的处理1.QNetworkAccessManager2.QNetworkRequest3.QNetworkReply QT实现GET请求和POST请求Get请求步骤Post请求步骤 测试结果 使用QT的开发产品最终作为一个客户端来使用,很大的一个功能就是要和后端服务器进行交互…

使用代理服务器和Beautiful Soup爬取亚马逊

概述 Beautiful Soup 是一个用于解析 HTML 和 XML 文档的 Python 库,它能够从网页中提取数据,并提供了一些简单的方法来浏览文档树、搜索特定元素以及修改文档的内容。在本文中,我们将介绍如何使用代理服务器和Beautiful Soup库来爬取亚马逊…

nginx 离线安装 https反向代理

这里写自定义目录标题 安装步骤1.安装nginx所需依赖1.1 安装gcc和gcc-c1.1.1下载依赖包1.1.2 上传依赖包1.1.3安装依赖 1.2 安装pcre1.2.1 下载pcre1.2.2 上传解压安装包1.2.3 编译安装 1.3 下载安装zlib1.3.1 下载zlib1.3.2 上传解压安装包1.3.3 编译安装 1.4 下载安装openssl…

UG扫掠体与部件导航器的使用

扫掠体命令的本质在我看来,就是用一个道具沿着轨迹线在选中的实体中进行加工,切除相应部分; 有如下原则 扫掠体: 引导线必须光顺相切,不能有尖角 工具体: 1、必须为单个的实体,不能有孔或内…

[NISACTF 2022]babyserialize

[NISACTF 2022]babyserialize 题目做法及思路解析(个人分享) 题目平台地址:NSSCTF | 在线CTF平台 一、题目代码 查看分析代码,寻找漏洞点(题目中注释为个人思路标注,实际代码中没有) …

每日一题,二维平面

给你 二维 平面上两个 由直线构成且边与坐标轴平行/垂直 的矩形,请你计算并返回两个矩形覆盖的总面积。 每个矩形由其 左下 顶点和 右上 顶点坐标表示: 第一个矩形由其左下顶点 (ax1, ay1) 和右上顶点 (ax2, ay2) 定义。 第二个矩形由其左下顶点 (bx1, …

牛客小白月赛78(C: 第K小表示数)

C-第K小表示数_牛客小白月赛78 (nowcoder.com) 问题: 分析: k的极限是1e6,因此要几乎O(n)的时间复杂度给求出来,还需要每插入一个元素我都要去排序,这个时候set就派上用场了,自带排序和去重,集合里面最小和第二小的一定是min(a…

LeetCode 647回文子串 517最长回文子序列 | 代码随想录25期训练营day57

动态规划算法14 LeetCode 647 回文子串 2023.12.20 题目链接代码随想录讲解[链接] int countSubstrings(string s) {//暴力搜索&#xff0c;前两层遍历确定子字符串的起始和末尾位置//第三层循环判断当前子字符串是否为回文串/*int result 0;for (int i 0; i < s.size…

【hadoop】解决浏览器不能访问Hadoop的50070、8088等端口?!

【hadoop】解决浏览器不能访问Hadoop的50070、8088等端口&#xff1f;&#xff01;&#x1f60e; 前言&#x1f64c;【hadoop】解决浏览器不能访问Hadoop的50070、8088等端口&#xff1f;&#xff01;查看自己的配置文件&#xff1a;最终成功访问如图所示&#xff1a; 总结撒花…

Best script for images porter 【容器镜像搬运最佳脚本】

文章目录 1. 简介2. 功能3. 代码4. 示例4.1 拉取 kube-prometheus-stack 55.4.1 版本的镜像 1. 简介 很多情况下&#xff0c;针对一个项目会有很多镜像需要搬运&#xff0c;打包&#xff0c;解压&#xff0c;打标签&#xff0c;推送入库。该项目将针对多个镜像进行管理操作。方…

vscode配置node.js调试环境

node.js基于VSCode的开发环境的搭建非常简单。 说明&#xff1a;本文的前置条件是已安装好node.js(具体安装不再赘述&#xff0c;如有需要可评论区留言)。 阅读本文可掌握&#xff1a; 方便地进行js单步调试&#xff1b;方便地查看内置的对象或属性&#xff1b; 安装插件 C…

GEE:如何解决随机森林分类器的确定性伪随机性?使得每次运行结果(OA、Kappa和混淆矩阵等)不一样

作者:CSDN @ _养乐多_ 在使用 Google Earth Engine(GEE)平台进行土地利用分类时,我们采用了随机森林分类器。理论上,由于该算法的随机性,每次运行后的分类结果应该是不同的。然而,我们在实际应用中却观察到每次运行后总体精度OA值和Kappa值都呈现出完全相同的结果。 这…

云原生消息流系统 Apache Pulsar 在腾讯云的大规模生产实践

导语 由 InfoQ 主办的 Qcon 全球软件开发者大会北京站上周已精彩落幕&#xff0c;腾讯云中间件团队的冉小龙参与了《云原生机构设计与音视频技术应用》专题&#xff0c;带来了以《云原生消息流系统 Apache Pulsar 在腾讯云的大规模生产实践》为主题的精彩演讲&#xff0c;在本…

Qt中多线程使用案列

Qt中多线程下载大文件 #pragma once#include <QWidget> #include <QPushButton> #include "ThreadPool.h" #include <QProgressBar> #include <QLabel> #include <QHBoxLayout> #include <QVBoxLayout> class MainWindow : pub…

Matlab论文插图绘制模板第131期—函数等高线图

在之前的文章中&#xff0c;分享了Matlab函数折线图的绘制模板&#xff1a; 函数三维折线图&#xff1a; 函数网格曲面图&#xff1a; 函数曲面图&#xff1a; 进一步&#xff0c;再来分享一下函数等高线图。 先来看一下成品效果&#xff1a; 特别提示&#xff1a;本期内容『数…

(9)Linux Git的介绍以及缓冲区

&#x1f4ad; 前言 本章我们先对缓冲区的概念进行一个详细的探究&#xff0c;之后会带着大家一步步去编写一个简陋的 "进度条" 小程序。最后我们来介绍一下 Git&#xff0c;着重讲解一下 Git 三板斧&#xff0c;一般只要掌握三板斧就基本够用了。 缓冲区&#xff…