神经网络:池化层知识点

news2025/1/15 20:33:07

1.CNN中池化的作用

池化层的作用是对感受野内的特征进行选择,提取区域内最具代表性的特征,能够有效地减少输出特征数量,进而减少模型参数量。按操作类型通常分为最大池化(Max Pooling)、平均池化(Average Pooling)和求和池化(Sum Pooling),它们分别提取感受野内最大、平均与总和的特征值作为输出,最常用的是最大池化和平均池化。

2.全局池化的作用

全局池化主要包括全局平均池化和全局最大池化。

全局最大池化

全局平均池化

接下来,Rocky以全局平均池化为例,讲述其如何在深度学习网络中发挥作用。

刚才已经讲过,全局平均池化就是对最后一层卷积的特征图,每个通道求整个特征图的均值。如下图所示:

全局平均池化

一般网络的最后会再接几个全连接层,但全局池化后的feature map相当于一像素,所以最后的全连接其实就成了一个加权相加的操作。这种结构比起直接的全连接更加直观,参数量大大幅下降,并且泛化性能更好:

全局池化的作用:

1.降低信息冗余

  • 池化层有助于提取输入特征图中的主要信息,同时抑制次要信息。这种操作使得模型更专注于重要特征,减少冗余或不相关的特征,有利于模型的训练和泛化能力。

2.特征降维与下采样

  • 池化操作导致输出特征图的尺寸减小,实现了特征降维和下采样的效果。这有助于减少计算量,并提高后续层对图像特征的感知范围,使得一个池化后的像素对应前面图片中的一个区域。

3.特征压缩与网络简化

  • 池化层能够对特征图进行压缩,减少计算资源的消耗,简化网络结构,降低模型复杂度,有助于防止过拟合,提高模型的泛化能力。

4.提升模型的不变性

  • 池化操作有助于提升模型对尺度、旋转和平移的不变性。经过池化后的特征图,在输入特征图的大小或旋转角度发生变化时,输出特征图的大小和旋转角度保持不变。这种不变性有助于提高模型的泛化能力和鲁棒性。

5.实现非线性。

3.池化的分类

A. 一般池化(General Pooling):

在CNN中,池化层用于减小特征图的空间尺寸,以降低计算量并减少过拟合的可能性。最常见的池化操作有两种:

平均池化(Average Pooling):
  • 计算图像区域的平均值作为该区域池化后的值。
  • 能够抑制由于邻域内大小受限造成估计值方差增大的现象。
  • 其特点是对于背景的保留效果更好。
最大池化(Max Pooling):
  • 选取图像区域的最大值作为该区域池化后的值。
  • 能够抑制网络参数误差造成估计均值偏移的现象。
  • 其特点是更好地提取纹理信息。
随机池化(Stochastic Pooling):
  • 根据概率对局部的值进行采样,采样结果便是池化结果。

B. 重叠池化(Overlapping Pooling):

在某些情况下,相邻的池化窗口之间可以有重叠区域。这种情况下一般会设置池化窗口的大小(size)大于步幅(stride)。

重叠池化的特点是相比于常规池化操作,它可以更充分地捕获图像特征,但也可能导致计算量增加。

这些池化方法是CNN中常用的技术手段,用于在保留重要信息的同时减少数据尺寸和参数量,从而改善模型的性能和泛化能力。

4.池化的进阶使用---SPP结构介绍

论文名称:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
下载地址:https://arxiv.org/abs/1406.4729

空间金字塔池化(Spatial Pyramid Pooling,SPP)层的引入解决了在传统卷积神经网络(CNN)中需要固定输入图像尺寸的限制。传统的全连接层对于输入要求固定大小的特征向量,这意味着所有输入图像需要统一尺寸,通常需要进行裁剪或拉伸,导致图像失真。SPP层允许网络接受不同尺寸的输入图像,通过金字塔形状的池化区域对不同大小的特征图进行整合和提取特征。其作用在于将不同大小的特征图转换成固定大小的特征向量,使得在连接全连接层之前,所有输入都具有相同的大小,无需提前处理图像。这种灵活性提高了网络的适用性和泛化能力,使得模型能够更灵活地处理各种尺寸的输入。

在这里插入图片描述
在这里插入图片描述

SPP(空间金字塔池化)的显著特点有:

固定大小的输出:无论输入尺寸如何,SPP能够产生固定大小的输出,克服了全连接层要求固定长度输入的限制。

多个窗口的池化:SPP采用多个窗口的池化,使其能够在不同尺度下提取特征。

尺度不变性和特征一致性:可以处理不同纵横比和尺寸的输入图像,增强了模型的尺度不变性,降低了过拟合的风险。

其他特点包括:

多样性训练图像对网络收敛更容易:SPP允许训练使用不同尺寸的图像,相较于单一尺寸的训练图像,这种多样性训练更有利于网络的收敛。

独立于特定网络设计和结构:SPP可用作卷积神经网络的最后一层,不会影响网络结构,仅替换了原本的池化层。

适用于图像分类和目标检测:SPP不仅适用于图像分类,还可用于目标检测等任务,扩展了其应用领域。

SPP的这些特点使得它成为一个强大的工具,在处理不同尺寸、不同纵横比的图像时,保持固定长度特征向量的输出,提高了模型的灵活性和泛化能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1324624.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MongoDB】--MongoDB的Sort排序问题

目录 一、问题背景描述1.1、问题背景1.2、问题分析 二、建立索引支持深度翻页查询2.1、调整sort排序的内存限制【不建议】2.2、创建索引2.3、拓展--组合索引什么时候失效 二、聚合查询解决深度翻页查询 一、问题背景描述 1.1、问题背景 现实系统页面翻页到20000页之后&#x…

Eclipse导入SSM项目

Eclipse导入SSM项目 导入项目 配置JDK环境 去除校验 设置Tomcat 效果如下: 配置Tomcat端口 启动Tomcat

【数据结构和算法】盛最多水的容器

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 方法一:暴力枚举 2.2 方法二:双指针 三、代码 3.1 方法一:暴力…

关于B+树的总结

B树(B-tree) B树属于多叉树又名平衡多路查找树(查找路径不只两个),数据库索引技术里大量使用着B树和B树的数据结构 规则: (1)排序方式:所有节点关键字是按递增次序排列,并遵循左小…

浅析RoPE旋转位置编码的远程衰减特性

为什么 θ i \theta_i θi​的取值会造成远程衰减性 旋转位置编码的出发点为&#xff1a;通过绝对位置编码的方式实现相对位置编码。 对词向量 q \boldsymbol{q} q添加绝对位置信息 m m m&#xff0c;希望找到一种函数 f f f&#xff0c;使得&#xff1a; < f ( q , m ) …

技术资讯:Firefox浏览器即将被淘汰?

大家好&#xff0c;我是大澈&#xff01; 本文约1200字&#xff0c;整篇阅读大约需要2分钟。 感谢关注微信公众号&#xff1a;“程序员大澈”&#xff0c;免费领取"面试礼包"一份&#xff0c;然后免费加入问答群&#xff0c;从此让解决问题的你不再孤单&#xff01…

OpenHarmony开发—Ubuntu环境搭建

搭建Ubuntu环境 在嵌入式开发中&#xff0c;很多开发者习惯于使用Windows进行代码的编辑&#xff0c;比如使用Windows的Visual Studio Code进行OpenHarmony代码的开发。但当前阶段&#xff0c;大部分的开发板源码还不支持在Windows环境下进行编译&#xff0c;如Hi3861、Hi3516…

高高。。。。

重点&#xff1a;存储系统/分布式系统 得到数据&#xff1a; 数据模型计算&#xff08;简单系统&#xff09;实现一个操作系统CPU&#xff08;成本高&#xff09;仿真实验 文章类型&#xff1a; 国际会议 10-15slices期刊论文 做OS研究为其他方面提供支持 一 Advanced OS …

【VScode和Leecode的爱恨情仇】command ‘leetcode.signin‘ not found

文章目录 一、关于command ‘leetcode.signin‘ not found的问题二、解决方案第一&#xff0c;没有下载Nodejs&#xff1b;第二&#xff0c;有没有在VScode中配置Nodejs第三&#xff0c;力扣的默认在VScode请求地址中请求头错误首先搞定配置其次搞定登入登入方法一&#xff1a;…

C++命名空间(超详细)using namespace std

文章目录 前言一、为什么要有命名空间二、命名空间的定义1.正常定义2.嵌套定义3.多文件 三、命名空间的使用1.命名空间名称作用域限定符2.使用using将命名空间某个成员引入3.使用using namespace将整个命名空间引入 四、c标准库总结 前言 在本文章中&#xff0c;我们将要详细介…

【CANoe】CAPL中测试控制函数和故障注入函数的使用

文章目录 1、介绍2、示例脚本【可结合总线报文的变化进行理解】 1、介绍 2、示例脚本【可结合总线报文的变化进行理解】 testcase TC01() {TestCaseTitle("TC01","TC01");//示例1&#xff1a;禁止/使能发送BMS_100ms这帧报文testDisableMsg(BMS_100ms);te…

llvm后端之DAG设计

llvm后端之DAG设计 引言1 核心类设计2 类型系统2.1 MVT::SimpleValueType2.2 MVT2.3 EVT 3 节点类型 引言 llvm后端将中端的IR转为有向无环图&#xff0c;即DAG。如下图&#xff1a; 图中黑色箭头为数据依赖&#xff1b;蓝色线和红色线为控制依赖。蓝色表示指令序列化时两个节…

windows远程桌面怎么开启?

文章目录 如下三种开启方式&#xff0c;任选一即可方式1.在系统属性中开启远程桌面方式2.通过系统设置开启远程桌面方式3.注册表编辑器开启远程桌面使用远程桌面 如下三种开启方式&#xff0c;任选一即可 配合 组网工具或者内网穿透 超级爽 局域网其他pc如何访问宿主机虚拟机IP…

C语言—每日选择题—Day57

指针相关博客 打响指针的第一枪&#xff1a;指针家族-CSDN博客 深入理解&#xff1a;指针变量的解引用 与 加法运算-CSDN博客 第一题 1. 下面程序段&#xff08;&#xff09; char *str[] {"ABC", "DEF", "GHI"}; puts(str[1]); A&#xff1a;A…

设计模式——外观模式(Facade Pattern)

概述 外观模式又称为门面模式&#xff0c;它通过引入一个外观角色来简化客户端与子系统之间的交互&#xff0c;为复杂的子系统调用提供一个统一的入口&#xff0c;降低子系统与客户端的耦合度&#xff0c;且客户端调用非常方便。它是一种对象结构型模式。外观模式结构图如下所示…

DriveWorks Solo捕获参数(三)

捕获参数 - 木门和矩形窗 木质门 下一个组件是木门本身。除了尺寸之外&#xff0c;门还具有需要控制的功能。 让我们首先捕获尺寸。 通过单击“捕获资源管理器”中的标题来激活“捕获的模型”部分。 双击任务窗格树中的模型木门以在 SOLIDWORKS 中将其打开。捕获以下尺寸。…

Apache Kyuubi 讲解与实战操作

文章目录 一、概述二、Spark Kyuubi 架构三、Hadoop 基础环境安装1&#xff09;hadoop 下载部署包2&#xff09;创建网络3&#xff09;部署MySQL4&#xff09;部署 Hadoop Hive 四、Spark Kyuubi 安装1&#xff09;下载 Kyuubi2&#xff09;下载 Spark32&#xff09;配置 Kyuub…

final的详解

在Java中&#xff0c;final 关键字用于表示不可改变的实体&#xff0c;可以应用于变量、方法、类和指令重排序。它有不同的作用&#xff0c;具体取决于它被应用的上下文。 1.对于变量&#xff1a; 如果一个变量被声明为 final&#xff0c;则该变量的值在一旦被赋予后就不能再被…

excel该如何实现生成条形码/二维码?

如何在Excel中制作条形码/二维码&#xff1f; 1.首先&#xff0c;打开电脑上的Excel。进入后&#xff0c;在上方菜单栏中找到并点击“开发工具”。如果没有找到开发工具&#xff0c;就先点击“文件”&#xff0c;在弹出菜单中再点击“选项”。 2.打开Excel选项窗口后&#xff0…

循环栅栏:CyclicBarrier

CyclicBarrier可以理解为循环栅栏&#xff0c;栅栏就是一种障碍物&#xff0c; 比如通常在私人宅院的周围就可以围上一圈栅栏&#xff0c;阻止闲杂人等入内。 这里当然就是用来阻止线程继续执行&#xff0c;要求线程在栅栏外等待。 前面的Cyclic意为循环&#xff0c;也就是说这…