算法(2)——滑动窗口

news2024/11/6 7:25:58

前言:

步骤及算法模板:

确定两个指针变量,left=0,right=0;

进窗口:

判断:

        出窗口

更新结果

接下来我们的所用滑动窗口解决问题都需要以上几个步骤。 

一、长度最小的子数组

209. 长度最小的子数组 - 力扣(LeetCode)

1、题目描述:

2、题解思路:

(1)暴力求解:「从前往后」枚举数组中的任意⼀个元素,把它当成起始位置。然后从这个「起始位置」开始,然后寻找⼀段最短的区间,使得这段区间的和「⼤于等于」⽬标值。将所有元素作为起始位置所得的结果中,找到「最⼩值」即可。

算法代码:

class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) 
{
// 记录结果
    int ret = INT_MAX;
    int n = nums.size();
        // 枚举出所有满⾜和⼤于等于 target 的⼦数组[start, end]
        // 由于是取到最⼩,因此枚举的过程中要尽量让数组的⻓度最⼩
        // 枚举开始位置
    for (int start = 0; start < n; start++)
    {
        int sum = 0; // 记录从这个位置开始的连续数组的和
        // 寻找结束位置
        for (int end = start; end < n; end++)
        {
            sum += nums[end]; // 将当前位置加上
            if (sum >= target) // 当这段区间内的和满⾜条件时
            {
                // 更新结果,start 开头的最短区间已经找到
                ret = min(ret, end - start + 1);
                break;
            }
        }
    }
    // 返回最后结果
    return ret == INT_MAX ? 0 : ret;
   }
};

(2)滑动窗口:

由于此问题分析的对象是「⼀段连续的区间」,因此可以考虑「滑动窗」的思想来解决这道题。
让滑动窗⼝满⾜:从 i 位置开始,窗内所有元素的和⼩于 target (那么当窗内元素之和第⼀次⼤于等于⽬标值的时候,就是 i 位置开始,满⾜条件的最⼩⻓度)。
做法:将右端元素划⼊窗⼝中,统计出此时窗内元素的和:
▪ 如果窗内元素之和⼤于等于 target :更新结果,并且将左端元素划出去的同时继续判断是否满⾜条件并更新结果(因为左端元素可能很⼩,划出去之后依旧满⾜条件)
▪ 如果窗内元素之和不满⾜条件: right++ ,另下⼀个元素进⼊窗⼝。

为何滑动窗⼝可以解决问题,并且时间复杂度更低?


▪ 这个窗⼝寻找的是:以当前窗⼝最左侧元素(记为 left1 为基准,符合条件的情况。也就是在这道题中,从left1开始,满⾜区间和sum >= target时的最右侧(记为right1 )能到哪⾥。


▪ 我们既然已经找到从 left1 开始的最优的区间,那么就可以⼤胆舍去 left1 。但是如
果继续像⽅法⼀⼀样,重新开始统计第⼆个元素( left2 )往后的和,势必会有⼤量重复
的计算(因为我们在求第⼀段区间的时候,已经算出很多元素的和了,这些和是可以在计算
下次区间和的时候⽤上的)。


▪ 此时, rigth1 的作⽤就体现出来了,我们只需将 left1 这个值从 sum 中剔除。从right1 这个元素开始,往后找满⾜ left2 元素的区间(此时right1也有可能是满⾜的,因为 left1 可能很⼩。 sum 剔除掉left1 之后,依旧满⾜⼤于等于target )。这样我们就能省掉⼤量重复的计算。


▪ 这样我们不仅能解决问题,⽽且效率也会⼤⼤提升。
时间复杂度:虽然代码是两层循环,但是我们的 left 指针和 right 指针都是不回退的,两者
最多都往后移动 n 次。因此时间复杂度是O(N) 。
 

3、滑动窗口代码

class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) 
    {
        int maxlen=INT_MAX;
        int left=0,right=0;
        int sum=0;
        while(right<nums.size())
        {
            sum+=nums[right];
            while(sum>=target)
            {
                maxlen=fmin(maxlen,right-left+1);
                sum-=nums[left++]; 
            }
            right++;
        }
        return maxlen==INT_MAX?0:maxlen;
    }
};

二、无重复字符的最长字串

3. 无重复字符的最长子串 - 力扣(LeetCode)

1、题目描述

2、

2、题解思路:

(1)暴力求解:

枚举「从每⼀个位置」开始往后,⽆重复字符的⼦串可以到达什么位置。找出其中⻓度最⼤的即
可。
在往后寻找⽆重复⼦串能到达的位置时,可以利⽤「哈希表」统计出字符出现的频次,来判断什么
时候⼦串出现了重复元素

代码实现:

class Solution {
public:
    int lengthOfLongestSubstring(string s) {
    int ret = 0; // 记录结果
    int n = s.length();
    // 1. 枚举从不同位置开始的最⻓重复⼦串
    // 枚举起始位置
    for (int i = 0; i < n; i++)
    {
    // 创建⼀个哈希表,统计频次
        int hash[128] = { 0 };
        // 寻找结束为⽌
        for (int j = i; j < n; j++)
        {
            hash[s[j]]++; // 统计字符出现的频次
            if (hash[s[j]] > 1) // 如果出现重复的
                break;
            // 如果没有重复,就更新 ret
            ret = max(ret, j - i + 1);
        }
    }
    // 2. 返回结果
    return ret;
    }
};

(2)滑动窗口实现:

研究的对象依旧是⼀段连续的区间,因此继续使⽤「滑动窗⼝」思想来优化。
让滑动窗⼝满⾜:窗⼝内所有元素都是不重复的。做法:右端元素 ch 进⼊窗⼝的时候,哈希表统计这个字符的频次:

▪ 如果这个字符出现的频次超过 1 ,说明窗⼝内有重复元素,那么就从左侧开始划出窗⼝,直到 ch 这个元素的频次变为 1 ,然后再更新结果。
▪ 如果没有超过 1 ,说明当前窗⼝没有重复元素,可以直接更新结果

代码实现:

class Solution {
public:
    int lengthOfLongestSubstring(string s) 
    {
        int left=0,right=0;
        int hash[128]={0};
        int maxlen=0;
        while(s.size()>right)
        {
            hash[s[right]]++;
            while(hash[s[right]]>1)
            {
                hash[s[left]]--;
                left++;
            }
            maxlen=max(maxlen,right-left+1);
           
            right++;
        }
        return maxlen;
    }
};

三、最大连续1的个数Ⅲ

1004. 最大连续1的个数 III - 力扣(LeetCode)

1、题目描述:

2、题解思路:

不要去想怎么翻转,不要把问题想的很复杂,这道题的结果⽆⾮就是⼀段连续的1 中间塞了 k 个 0 嘛。
因此,我们可以把问题转化成:求数组中⼀段最⻓的连续区间,要求这段区间内0的个数不超过 k 个。

3、代码实现:

class Solution {
public:
    int longestOnes(vector<int>& nums, int k) 
    {
        int left=0,right=0;
        int zero=0;
        int maxlen=0;
        while(nums.size()>right)
        {
            if(nums[right]==0) zero++;
            while(k<zero)
            {
                if(nums[left++]==0)
                {
                    zero--;
                }
            }
            maxlen=max(maxlen,right-left+1);
            right++;
        }
        return maxlen;
    }
};

四、将x减到0的最⼩操作数

1658. 将 x 减到 0 的最小操作数 - 力扣(LeetCode)

1、题目描述:

2、题解思路:

题⽬要求的是数组「左端+右端」两段连续的、和为 x 的最短数组,信息量稍微多⼀些,不易理清
思路;我们可以转化成求数组内⼀段连续的、和为 sum(nums) - x 的最⻓数组。此时,就是熟
悉的「滑动窗⼝」问题了。

3、代码实现:

class Solution {
public:
    int minOperations(vector<int>& nums, int x) 
    {
        int sum=0;
        for(auto e:nums) sum+=e;
        int target=sum-x;
        if(target<0) return -1;
        int left=0,right=0;
        int ret=-1;
        int tmp=0;
        while(right<nums.size())
        {
            tmp+=nums[right];
            while(tmp>target)
            {
                tmp-=nums[left];
                left++;
            }
            if(target==tmp)
            {
                ret=max(ret,right-left+1);
            }
            
            right++;
        }
        if(ret==-1)
        {
            return ret;
        }
        else
        {
            return nums.size()-ret;
        }
    }
};

五、⽔果成篮

904. 水果成篮 - 力扣(LeetCode)

1、题目描述:

2、题解思路:

让滑动窗⼝满⾜:窗⼝内⽔果的种类只有两种。
做法:右端⽔果进⼊窗⼝的时候,⽤哈希表统计这个⽔果的频次。这个⽔果进来后,判断哈希表的
⼤⼩:
▪ 如果⼤⼩超过2:说明窗⼝内⽔果种类超过了两种。那么就从左侧开始依次将⽔果划出窗⼝,直到哈希表的⼤⼩⼩于等于2,然后更新结果;
▪ 如果没有超过2,说明当前窗⼝内⽔果的种类不超过两种,直接更新结果ret。

3、算法代码:

class  Solution{
public:
    int totalFruit(vector<int>& fruits)
    {
        int left=0,right=0;
        int hash[100001]={0};
        int ret=0,kinds=0;
        while(fruits.size()>right)
        {
            if(hash[fruits[right]]==0) kinds+=1;
            hash[fruits[right]]++;
            while(kinds>2)
            {
                hash[fruits[left]]--;
                if(hash[fruits[left]]==0) kinds-=1;
                left++;
            }
            ret=fmax(ret,right-left+1);
            right++;
        }
        return ret;
    }

};

六、找到字符串中所有字⺟异位词

438. 找到字符串中所有字母异位词 - 力扣(LeetCode)

1、题目描述:

2、算法思路:

◦ 因为字符串 p 的异位词的⻓度⼀定与字符串 p 的⻓度相同,所以我们可以在字符串 s 中构
造⼀个⻓度为与字符串 p 的⻓度相同的滑动窗⼝,并在滑动中维护窗⼝中每种字⺟的数量;
◦ 当窗⼝中每种字⺟的数量与字符串 p 中每种字⺟的数量相同时,则说明当前窗⼝为字符串p 的异位词;
◦ 因此可以⽤两个⼤⼩为26 的数组来模拟哈希表,⼀个来保存 s 中的⼦串每个字符出现的个数,另⼀个来保存 p 中每⼀个字符出现的个数。这样就能判断两个串是否是异位词。

3、算法代码:

class Solution {
public:
    vector<int> findAnagrams(string s, string p) 
    {
        vector<int> ret;
        int hash1[26]={0};
        int hash2[26]={0};
        for(auto ch:p) hash1[ch-'a']++;
        int m=p.size();
        for(int left=0,right=0,count=0;right<s.size();right++)
        {
            char in=s[right];
            if(++hash2[in-'a']<=hash1[in-'a']) count++;
            if(right-left+1>m)
            {
                char out=s[left];
                left++;
                if(hash2[out-'a']-- <= hash1[out-'a']) count--;
            }
            if(count==m)
            {
                ret.push_back(left);
            }
        }
        return ret;
    }
};

七、串联所有单词的⼦串

30. 串联所有单词的子串 - 力扣(LeetCode)

1、题目描述:

  • words[i] 和 s 由小写英文字母组成

2、题解思路:

如果我们把每⼀个单词看成⼀个⼀个字⺟,问题就变成了找到「字符串中所有的字⺟异位词」。⽆
⾮就是之前处理的对象是⼀个⼀个的字符,我们这⾥处理的对象是⼀个⼀个的单词。

3、算法代码:

class Solution {
public:
    vector<int> findSubstring(string s, vector<string>& words) 
    {
        vector<int> ret;
        unordered_map<string,int> hash1; //保存words所有单词的频次
        for(auto& ch:words) hash1[ch]++;
        int len=words[0].size(),m=words.size();
        for(int i=0;i<len;i++) //执行滑动窗口次数
        {
            unordered_map<string,int> hash2;  //维护窗口内单词的频次
            for(int left=i,right=i,count=0;right+len<=s.size();right+=len)
            {
                //进窗口+维护
                string in =s.substr(right,len);  //截取长度为len的字符串
                hash2[in]++;
                if(hash1.count(in)&&hash2[in]<=hash1[in]) count++;
                //判断
                if(right-left+1>len*m)
                {
                    //出窗口+维护
                    string out =s.substr(left,len);
                    if(hash1.count(out)&&hash2[out]<=hash1[out]) count--;
                    hash2[out]--;
                    left+=len;
                }  
                //更新结果
                if(count==m)
                {
                    ret.push_back(left);
                }
            }
        }
        return ret;
    }
};

八、最⼩覆盖⼦串

76. 最小覆盖子串 - 力扣(LeetCode)

1、题目描述:

2、算法思路:

◦ 研究对象是连续的区间,因此可以尝试使⽤滑动窗⼝的思想来解决。
◦ 如何判断当前窗⼝内的所有字符是符合要求的呢?
我们可以使⽤两个哈希表,其中⼀个将⽬标串的信息统计起来,另⼀个哈希表动态的维护窗⼝
内字符串的信息。
当动态哈希表中包含⽬标串中所有的字符,并且对应的个数都不⼩于⽬标串的哈希表中各个字
符的个数,那么当前的窗⼝就是⼀种可⾏的⽅案。

3、算法代码:

class Solution {
public:
    string minWindow(string s, string t) 
    {
        int hash1[128]={0};
        int kinds=0;
        for(auto ch:t) if(hash1[ch]++==0) kinds++;
        int hash2[128]={0};
        int minlen=INT_MAX,begin=-1;
        for(int left=0,right=0,count=0;right<s.size();right++)
        {
            char in=s[right];
            if(++hash2[in]==hash1[in]) count++;
            while(count==kinds)
            {
                if(right-left+1<minlen)
                {
                    minlen=right-left+1;
                    begin=left;
                }
                char out=s[left++];
                if(hash2[out]--==hash1[out]) count--;
            }
        }
        if(begin==-1)return "";
        return s.substr(begin,minlen);
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1322396.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VR党建:VR全景技术如何助力党建知识传播

导语&#xff1a; 随着科技的不断发展&#xff0c;虚拟现实技术逐渐深入人们生活的方方面面。VR全景技术作为一种全新的沉浸式体验方式&#xff0c;被广泛应用于娱乐、教育、医疗等领域。而在党建学习中&#xff0c;VR全景技术也展现出了巨大的潜力&#xff0c;成为了一种创新…

23.会话技术

概述 提出问题 HTTP协议是一种无状态的协议&#xff0c;WEB服务器本身不能识别出哪些请求是同一个浏览器发出的 &#xff0c;浏览器的每一次请求都是完全孤立的 怎么才能实现网上商店中的购物车呢&#xff1a;某个用户从网站的登录页面登入后&#xff0c;再进入购物页面购物时…

P58 生成式对抗网络(GAN)

Generator network as generator x 和 z 同时作为 network的输入 z服从一定的简单分布 生成复杂分布的y 为什么要训练 generator , 为什么输出是要一个分布&#xff1f; 为了适应一些具有创造性的任务 &#xff0c;答案有多种可能。比如打游戏可能向左。可能向右。 加入一个…

AWS RDS慢日志文件另存到ES并且每天发送邮件统计慢日志

1.背景&#xff1a;需要对aws rds慢日志文件归档到es&#xff0c;让开发能够随时查看。 2.需求&#xff1a;并且每天把最新的慢日志&#xff0c;过滤最慢的5条sql 发送给各个产品线的开发负责人。 3.准备&#xff1a; aws ak/sk &#xff0c;如果rds 在不同区域需要认证不同的…

Linux软件管理rpm和yum

rpm方式管理 rpm软件包名称: 软件名称 版本号(主版本、次版本、修订号) 操作系统 -----90%的规律 #有依赖关系,不能自动解决依赖关系。 举例&#xff1a;openssh-6.6.1p1-31.el7.x86_64.rpm 数字前面的是名称 数字是版本号&#xff1a;第一位主版本号&#xff0c;第二位次版本…

【数据分享】2019-2023年我国地级市逐年新房房价数据(免费获取/Excel/Shp格式)

房价是一个城市发展程度的重要体现&#xff0c;一个城市的房价越高通常代表这个城市越发达&#xff0c;对于人口的吸引力越大&#xff01;因此&#xff0c;房价数据是我们在各项城市研究中都非常常用的数据&#xff01;之前我们分享了2019—2023年我国地级市逐月的新房房价数据…

【Java异常】idea 报错:无效的目标发行版:17 的解决办法

【Java异常】idea 报错&#xff1a;无效的目标发行版&#xff1a;17 的解决办法 一&#xff0c;问题来源 springcloud的第一个demo项目就给我干趴了 二、原因分析 java: 无效的目标发行版: 17 原因就是 JDK 版本不对。从 IDEA 编辑器中可以找到问题的原因所在&#xff0c;…

金蝶报表二开

本案例描述&#xff1a; 折旧明细报表中加入字段&#xff1a;存放地点、成本中心部门、使用人组织三个字段。 参考社区案例&#xff1a;报表二次开发添加自定义字段的指导方案 步骤&#xff1a; 1、加入报表插件 继承原报表的类。重写BuilderReportSqlAndTempTable、GetRe…

零基础也能制作家装预约咨询小程序

近年来&#xff0c;随着互联网的快速发展&#xff0c;越来越多的消费者倾向于使用手机进行购物和咨询。然而&#xff0c;许多家装实体店却发现自己的客流量越来越少&#xff0c;急需一种新的方式来吸引顾客。而开发家装预约咨询小程序则成为了一种利用互联网技术来解决这一问题…

CTF命令执行部分总结

&#x1f60b;大家好&#xff0c;我是YAy_17&#xff0c;是一枚爱好网安的小白&#xff0c;正在自学ing。 本人水平有限&#xff0c;欢迎各位大佬指点&#xff0c;一起学习&#x1f497;&#xff0c;一起进步⭐️。 ⭐️此后如竟没有炬火&#xff0c;我便是唯一的光。⭐️ 关于…

selenium自动化webdriver下载及安装

1、确认浏览器的版本 在浏览器的地址栏&#xff0c;输入chrome://version/&#xff0c;回车后即可查看到对应版本 2、找到对应的chromedriver版本 2.1 114及之前的版本可以通过点击下载chromedriver,根据版本号&#xff08;只看大版本&#xff09;下载对应文件 2.2 116版本通过…

大模型评估中Pass@k值是如何计算的

在前面的博客中分别介绍了大模型评估过程不同指标的含义&#xff0c;以及如何通过代码&#xff0c;实现指标的收集。如果对如何运行代码生成结果和收集passk指标不清楚&#xff0c;可以参考这两篇博客。 如何对大模型进行评估上 如何对大模型进行评估下 Passk的来源 代码的生…

低代码软件开发的革命

一、前言 如果一个概念能在科技圈火起来&#xff0c;它往往兼具字面简明和内涵丰富的特征&#xff0c;并具有某种重塑产业格局的潜力。低代码&#xff08;Low Code&#xff09;就是这样一个典型。顾名思义&#xff0c;低代码是指少用代码&#xff0c;甚至不用代码&#xff0c;仅…

大学生可以自学嵌入式开发吗?

今日话题&#xff0c;大学生可以自学嵌入式开发吗&#xff1f;大学期间完全可以自学嵌入式开发&#xff0c;但这需要极大的毅力和耐心。嵌入式学习的过程可能会让你感到自卑&#xff0c;但也能带来无限成就感。嵌入式开发伴随着一系列问题&#xff0c;这些问题既是挑战也是机会…

Nodejs 第二十六章(反向代理)

什么是反向代理? 反向代理&#xff08;Reverse Proxy&#xff09;是一种网络通信模式&#xff0c;它充当服务器和客户端之间的中介&#xff0c;将客户端的请求转发到一个或多个后端服务器&#xff0c;并将后端服务器的响应返回给客户端。 负载均衡&#xff1a;反向代理可以根…

在Python中使用Kafka帮助我们处理数据

Kafka是一个分布式的流数据平台&#xff0c;它可以快速地处理大量的实时数据。Python是一种广泛使用的编程语言&#xff0c;它具有易学易用、高效、灵活等特点。在Python中使用Kafka可以帮助我们更好地处理大量的数据。本文将介绍如何在Python中使用Kafka简单案例。 一、安装K…

2023 英特尔On技术创新大会直播 | AI 融合发展之旅

前言 2023 年的英特尔 On 技术创新大会中国站&#xff0c;主要聚焦最新一代增强 AI 能力的计算平台&#xff0c;深度讲解如何支持开放、多架构的软件方案&#xff0c;以赋能人工智能并推动其持续发展。 大会的目标之一是优化系统并赋能开发者&#xff0c;特别注重芯片增强技术…

火柴棍等式c语言

分析&#xff1a;我们可以枚举等式&#xff0c;在判断这些等式是由多少根火柴组成&#xff0c;在把火柴数量和之前输入的比较&#xff0c;如果相等&#xff0c;那么就统计一次&#xff0c;注意的是等号和加号需要减去四根。 #include <stdio.h> int f(int a){//判断某一…

国产划片机品牌众多,如何选择优质的供应商?

在半导体行业的发展浪潮中&#xff0c;划片机作为关键设备之一&#xff0c;其性能和质量对于生产过程的高效性和产品的质量具有至关重要的影响。近年来&#xff0c;国产划片机的品牌数量不断增多&#xff0c;为半导体行业提供了更多的选择。然而&#xff0c;如何从众多的品牌中…

sourcetree 无效的源路径 细节提示:系统找不到指定的文件

工具–>选项–>git 直接下拉到底 点击红框&#xff0c;重新下载一个内嵌git就可以了 我感觉是因为改变了原有git安装路径的问题