机器学习 | KNN算法

news2025/1/12 4:48:54

一、KNN算法核心思想和原理

1.1、怎么想出来的?

        近朱者赤,近墨者黑!

        距离决定一切、民主集中制

1.2、基本原理 —— 分类

  •  k个最近的邻居
  •  民主集中制投票
  • 分类表决与加权分类表决

        

 1.3、基本原理 —— 回归

  • 计算未知点的值
  • 决策规则不同
  • 均值法与加权均值法

         

1.4、如何选择K值?

  • K太小导致“过拟合”(过分相信某个数据),容易把噪声学进来
  • K太大导致“欠拟合”,决策效率低

        

  • K不能太小也不能太大
  • Fit = 最优拟合(找三五个熟悉的人问问),通过超参数调参实现 ~

1.5、距离的度量

  •  明氏距离  Minkowski Distance
    • p为距离的阶数,n为特征空间的维度
    • p=1时,即曼哈顿距离;p=2时,即欧式距离
    • p趋向于无穷时,为切比雪夫距离
  • ·p=1时,曼哈顿距离  Manhattan Distance
  • ·p=2时,欧式距离  Euclidean Distance
    • 空间中两点的直线距离

1.6、特征归一化的重要性

         简单来讲,就是统一坐标轴比例


 二、代码实现 KNN 预测

KNN 预测的过程

  • 1. 计算新样本点与已知样本点的距离
  • 2. 按距离排序
  • 3. 确定k值
  • 4. 距离最近的k个点投票

 若不使用scikit-learn:

import numpy as np
import matplotlib.pyplot as plt
from collections import Counter

# 样本特征
data_X = [
    [1.3, 6],
    [3.5, 5],
    [4.2, 2],
    [5, 3.3],
    [2, 9],
    [5, 7.5],
    [7.2, 4 ],
    [8.1, 8],
    [9, 2.5]
]
# 样本标记
data_y = [0,0,0,0,1,1,1,1,1]
# 训练集
X_train = np.array(data_X)
y_train = np.array(data_y)
# 新的样本点
data_new = np.array([4,5])

# 1. 计算新样本点与已知样本点的距离
distance = [np.sqrt(np.sum(data - data_new)**2) for data in X_train]
# 2. 按距离排序
sort_index = np.argsort(distance)
# 3. 确定k值
k = 5
# 4. 距离最近的k个点投票
first_k = [y_train[i] for i in sort_index[:k]]
predict_y = Counter(first_k).most_common(1)[0][0]

print(predict_y)

若使用sklearn:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier

# 样本特征
data_X = [
    [1.3, 6],
    [3.5, 5],
    [4.2, 2],
    [5, 3.3],
    [2, 9],
    [5, 7.5],
    [7.2, 4 ],
    [8.1, 8],
    [9, 2.5]
]
# 样本标记
data_y = [0,0,0,0,1,1,1,1,1]
# 训练集
X_train = np.array(data_X)
y_train = np.array(data_y)
# 新的样本点
data_new = np.array([4,5])

# 创造类的实例
knn_classifier = KNeighborsClassifier(n_neighbors=5)
# fit
knn_classifier.fit(X_train,y_train)
# sklearn支持预测多个数据,而我们只有一个数据,所以需要将其转为二维
data_new.reshape(1,-1)
predict_y = knn_classifier.predict(data_new.reshape(1,-1))

print(predict_y)



三、划分数据集:训练集与预测集

为什么要划分数据集?

        评价模型性能

        防止过拟合

        提升泛化能力

3.1、划分数据集代码实现

import numpy as np 
from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs
x, y = make_blobs(
    n_samples = 300, # 样本总数
    n_features = 2,
    centers = 3,
    cluster_std = 1, # 类內标准差
    center_box = (-10, 10),
    random_state = 233, 
    return_centers = False
)
plt.scatter(x[:,0], x[:,1], c = y,s = 15)
plt.show()

划分数据集

index = np.arange(20)
index
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19])
np.random.shuffle(index)
index
array([13, 16,  2, 19,  7, 14,  9,  0,  1, 11,  8,  6, 15, 10,  4, 18,  3,
       12, 17,  5])
np.random.permutation(20)
array([12, 19,  6,  7, 11, 10,  4,  8, 16,  3,  2, 15, 18,  5,  9,  0,  1,
       14, 13, 17])
np.random.seed(233)
shuffle = np.random.permutation(len(x))
shuffle
array([ 23,  86, 204, 287, 206, 170, 234,  94, 146, 180, 263,  22,   3,
       264, 194, 290, 229, 177, 208, 202,  10, 188, 262, 120, 148, 121,
        98, 160, 267, 136, 294,   2,  34, 142, 271, 133, 127,  12,  29,
        49, 112, 218,  36,  57,  45,  11,  25, 151, 212, 289, 157,  19,
       275, 176, 144,  82, 161,  77,  51, 152, 135,  16,  65, 189, 298,
       279,  37, 187,  44, 210, 178, 165,   6, 162,  66,  32, 198,  43,
       108, 211,  67, 119, 284,  90,  89,  56, 217, 158, 228, 248, 191,
        47, 296, 123, 181, 200,  40,  87, 232,  97, 113, 122, 220, 153,
       173,  68,  99,  61, 273, 269, 281, 209,   4, 110, 259,  95, 205,
       288,   8, 283, 231, 291, 171, 111, 242, 216, 285,  54, 100,  38,
       185, 235, 174, 201, 107, 223, 222, 196, 268, 114, 147, 166,  85,
        39,  58, 256, 258,  74, 251,  15, 150, 137,  70,  91,  52,  14,
       169,  21, 184, 207, 238, 128, 219, 125, 293, 134,  27, 265,  96,
       270,  18, 109, 126, 203,  88, 249,  92, 213,  60, 227,   5,  59,
         9, 138, 236, 280, 124, 199, 225, 149, 145, 246, 192, 102,  48,
        73,  20,  31,  63, 237,  78,  62, 233, 118, 277,  28,  50,  64,
       117, 197, 140,   7, 105, 252,  71, 190,  76, 103,  93, 183,  72,
         0, 278,  79, 172, 214, 182, 292, 139, 260,  30, 195,  13, 244,
       240, 297, 257, 245, 143, 186, 243, 266, 286, 168, 179,  81, 215,
       129, 167, 106, 261,  42, 276,  69, 224, 253, 247, 155, 154,  17,
       132,  24, 141, 239,  80, 101,  75, 159, 116,  46, 272, 226,  83,
       156,  33, 115, 282, 299,  55, 250, 221, 254, 255,  41, 130, 104,
        26,  53,  84, 274,   1, 163, 230,  35, 241, 164, 193, 175, 131,
       295])
shuffle.shape
(300,)
train_size = 0.7
train_index = shuffle[:int(len(x) * train_size)]
test_index = shuffle[int(len(x) * train_size):]
train_index.shape, test_index.shape
((210,), (90,))
x[train_index].shape, y[train_index].shape
((210, 2), (210,))
x[test_index].shape, y[test_index].shape
((90, 2), (90,))
def my_train_test_split(x, y, train_size = 0.7, random_state = None):
    if random_state:
        np.random.seed(random_state)
    shuffle = np.random.permutation(len(x))
    train_index = shuffle[:int(len(x) * train_size)]
    test_index = shuffle[int(len(x) * train_size):]
    return x[train_index], x[test_index], y[train_index], y[test_index]
x_train, x_test, y_train, y_test = my_train_test_split(x, y, train_size = 0.7, random_state = 233)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((210, 2), (90, 2), (210,), (90,))
plt.scatter(x_train[:, 0], x_train[:, 1], c = y_train, s = 15)
plt.show()

plt.scatter(x_test[:, 0], x_test[:, 1], c = y_test, s = 15)
plt.show()


3.2、sklearn划分数据集

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size = 0.7, random_state = 233)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((210, 2), (90, 2), (210,), (90,))
from collections import Counter
Counter(y_test)
Counter({2: 34, 0: 25, 1: 31})
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size = 0.7, random_state = 233, stratify = y)
Counter(y_test)
Counter({2: 30, 0: 30, 1: 30})


 四、模型评价

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 1、加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 2、拆分数据集,首先需乱序处理
# 2.1、自己拆分不调包 ~
shuffle_index = np.random.permutation(len(y))
train_ratio = 0.8
train_size = int(len(y)*train_ratio)
train_index = shuffle_index[:train_size]
test_index = shuffle_index[train_size:]

X_train = X[train_index]
y_train = y[train_index]

X_test = X[test_index]
y_test = y[test_index]

# 2.2、调包 ~
X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.8,random_state=666)

# 3、预测
knn_classifier = KNeighborsClassifier(n_neighbors=5)
knn_classifier.fit(X_train, y_train)
# 若不关注预测结果只关注预测精度
# accuracy_score(X_test,y_test)
y_predict = knn_classifier.predict(X_test)
print(y_predict)

# 4、评价
accutacy = np.sum(y_predict == y_test) / len(y_test)
# 或使用
accuracy_score(y_test,y_predict)


五、超参数 Hyperpatameter

        人为设置的参数 / 经验值 / 参数搜索

        KNN的三个超参数:

        k个最近的邻居

        分类表决与加权分类表决

        明氏距离中的p

首先加载数据

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
iris = load_iris()
x = iris.data
y = iris.target
x.shape, y.shape
((150, 4), (150,))
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=233, stratify=y)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((105, 4), (45, 4), (105,), (45,))


5.1、超参数

from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(
    n_neighbors=3,
    weights='distance',#'uniform',
    p = 2
)
neigh.fit(x_train, y_train)

KNeighborsClassifier

KNeighborsClassifier(n_neighbors=3, weights='distance')
neigh.score(x_test, y_test)
0.9777777777777777
best_score = -1
best_n  = -1
best_weight = ''
best_p = -1

for n in range(1, 20):
    for weight in ['uniform', 'distance']:
        for p in range(1, 7):
            neigh = KNeighborsClassifier(
                n_neighbors=n,
                weights=weight,
                p = p
            )
            neigh.fit(x_train, y_train)
            score = neigh.score(x_test, y_test)
            
            if score > best_score:
                best_score = score
                best_n = n
                best_weight = weight
                best_p = p

print("n_neighbors:", best_n)
print("weights:", best_weight)
print("p:", best_p)
print("score:", best_score)
n_neighbors: 5
weights: uniform
p: 2
score: 1.0


5.2、sklearn 超参数搜索

from sklearn.model_selection import GridSearchCV
params = {
    'n_neighbors': [n for n in range(1, 20)],
    'weights': ['uniform', 'distance'],
    'p': [p for p in range(1, 7)]
}
grid = GridSearchCV(
    estimator=KNeighborsClassifier(),
    param_grid=params,
    n_jobs=-1
)
grid.fit(x_train, y_train)

GridSearchCV

GridSearchCV(estimator=KNeighborsClassifier(), n_jobs=-1,
             param_grid={'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
                                         13, 14, 15, 16, 17, 18, 19],
                         'p': [1, 2, 3, 4, 5, 6],
                         'weights': ['uniform', 'distance']})

estimator: KNeighborsClassifier

KNeighborsClassifier()

KNeighborsClassifier

KNeighborsClassifier()
grid.best_params_
{'n_neighbors': 9, 'p': 2, 'weights': 'uniform'}
grid.best_score_
0.961904761904762
grid.best_estimator_

KNeighborsClassifier

KNeighborsClassifier(n_neighbors=9)
grid.best_estimator_.predict(x_test)
array([2, 2, 0, 1, 1, 1, 2, 0, 2, 0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 1, 0, 1,
       1, 2, 2, 0, 0, 1, 1, 0, 2, 2, 0, 1, 1, 2, 1, 1, 0, 0, 0, 2, 0, 1,
       1])
grid.best_estimator_.score(x_test, y_test)
0.9555555555555556


六、特征归一化

        

        特征量纲不同。 为了消除数据特征量纲之间的影响,使得不同指标具有一定程度的可比性,能够同时反应每个指标的重要程度。

6.1、最值归一化方法

        适用于数据分布在有限范围的情况。但受特殊数值影响很大。

        

X[:,0] = (X[:,0] - np.min(X[:,0])) /  (np.max(X[:,0]) - np.min(X[:,0]))
X[:5,0]
array([0.22222222, 0.16666667, 0.11111111, 0.08333333, 0.19444444])

6.2、零均值归一化

        

X[:,0] = (X[:,0] - np.mean(X[:,0]))/np.std(X[:,0])
X[:5,0]
array([-0.90068117, -1.14301691, -1.38535265, -1.50652052, -1.02184904])


 scikit-learn 中的StandardScaler

from sklearn.preprocessing import StandardScaler
standard_scaler = StandardScaler()
standard_scaler.fit(X)

standard_scaler.mean_
array([5.84333333, 3.05733333, 3.758     , 1.19933333])
standard_scaler.scale_
array([0.82530129, 0.43441097, 1.75940407, 0.75969263])

注意要重新赋值给X!

X = standard_scaler.transform(X)

** 测试集如何归一化?

        不是用测试集的均值和标准差,而是用训练集的!

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

iris = datasets.load_iris()
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,train_size=0.8,random_state=666)

standard_scaler = StandardScaler()
standard_scaler.fit(X_train)

X_train_standard = standard_scaler.transform(X_train)
X_test_standard = standard_scaler.transform(X_test)

knn_classifier = KNeighborsClassifier(n_neighbors=5)
knn_classifier.fit(X_train_standard,y_train)
knn_classifier.score(X_test_standard, y_test)


七、KNN 回归任务实现

import numpy as np
import matplotlib.pyplot as plt
# 样本特征
data_X = [
    [1.3, 6],
    [3.5, 5],
    [4.2, 2],
    [5, 3.3],
    [2, 9],
    [5, 7.5],
    [7.2, 4 ],
    [8.1, 8],
    [9, 2.5]
]
data_y = [0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7]
X_train = np.array(data_X)
y_train = np.array(data_y)
data_new = np.array([4,5])
plt.scatter(X_train[:,0],X_train[:,1],color='black')
plt.scatter(data_new[0], data_new[1],color='b', marker='^')
for i in range(len(y_train)):
    plt.annotate(y_train[i], xy=X_train[i], xytext=(-15,-15), textcoords='offset points')

plt.show()

distances = [np.sqrt(np.sum((data - data_new)**2)) for data in X_train]
sort_index = np.argsort(distances)
k = 5
first_k =  [y_train[i] for i in sort_index[:k]]
from collections import Counter
Counter(first_k).most_common(1)
predict_y = Counter(first_k).most_common(1)[0][0]
predict_y
0.3
k = 5
first_k =  [y_train[i] for i in sort_index[:k]]
np.mean(first_k)
0.54

7.2、KNN回归 Scikit learn 实现

from sklearn.neighbors import KNeighborsRegressor
knn_reg = KNeighborsRegressor(n_neighbors=5)
knn_reg.fit(X_train, y_train)

KNeighborsRegressor

KNeighborsRegressor()
predict_y = knn_reg.predict(data_new.reshape(1,-1))
predict_y
array([0.54])

7.3、Boston 数据集

import numpy as np
import matplotlib.pyplot as plt
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_boston
import warnings
warnings.filterwarnings("ignore")
boston = load_boston()
x = boston.data
y = boston.target
x.shape, y.shape
((506, 13), (506,))
print(boston.DESCR)
.. _boston_dataset:

Boston house prices dataset
---------------------------

**Data Set Characteristics:**  

    :Number of Instances: 506 

    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.

    :Attribute Information (in order):
        - CRIM     per capita crime rate by town
        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.
        - INDUS    proportion of non-retail business acres per town
        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - NOX      nitric oxides concentration (parts per 10 million)
        - RM       average number of rooms per dwelling
        - AGE      proportion of owner-occupied units built prior to 1940
        - DIS      weighted distances to five Boston employment centres
        - RAD      index of accessibility to radial highways
        - TAX      full-value property-tax rate per $10,000
        - PTRATIO  pupil-teacher ratio by town
        - B        1000(Bk - 0.63)^2 where Bk is the proportion of black people by town
        - LSTAT    % lower status of the population
        - MEDV     Median value of owner-occupied homes in $1000's

    :Missing Attribute Values: None

    :Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/


This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980.   N.B. Various transformations are used in the table on
pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression
problems.   
     
.. topic:: References

   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.

x_train ,x_test, y_train, y_test = train_test_split(x, y ,train_size = 0.7, random_state=233)
from sklearn.neighbors import KNeighborsRegressor
knn_reg = KNeighborsRegressor(n_neighbors=5, weights='distance', p=2)
knn_reg.fit(x_train, y_train)

KNeighborsRegressor

KNeighborsRegressor(weights='distance')
knn_reg.score(x_test, y_test)
0.49308828546554706

 

归一化

from sklearn.preprocessing import StandardScaler
standardScaler = StandardScaler()
standardScaler.fit(x_train)

StandardScaler

StandardScaler()
x_train = standardScaler.transform(x_train)
x_test = standardScaler.transform(x_test)
knn_reg.fit(x_train, y_train)

KNeighborsRegressor

KNeighborsRegressor(weights='distance')
knn_reg.score(x_test, y_test)
0.8315777292735131


代码参考于

Chapter-04/4-7 特征归一化.ipynb · 梗直哥/Machine-Learning - Gitee.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1319247.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue2-动态组件案例

1.component介绍 说明: Type: string | ComponentDefinition | ComponentConstructor Explanation: String: 如果你传递一个字符串给 is,它会被视为组件的名称,用于动态地渲染不同类型的组件。这是一个在运行时动态切换组件类型的常见用例。…

西南科技大学数字电子技术实验六(智力竞赛抢答器的设计及FPGA实现)FPGA部分

一、实验目的 进一步掌握D触发器,分频电路,多谐振荡电器,CP时钟脉冲元等单元电路的设计。 二、实验原理 三、程序清单(每条语句必须包括注释或在开发窗口注释后截图) 逻辑代码: module contend ( inpu…

OpenCV 1.1:读取本地图片显示灰度图及CV版本

imread方法加载图像 imread 功能是加载图像文件成为一个 Mat 对象&#xff0c;其中第一个参数表示图像文件名称&#xff0c;第二个参数表示加载的图像是什么类型&#xff0c;支持常见的三个参数值IMREAD_UNCHANDED(<0) 表示加载原图&#xff0c;不做任何改变IMREAD_GRAYSCA…

Docker插件和扩展:深入Docker功能的完整指南

Docker作为一种流行的容器化技术&#xff0c;不仅令应用程序的部署更为便捷&#xff0c;同时也提供了丰富的插件和扩展机制&#xff0c;以满足更多复杂场景下的需求。本文将深入研究Docker的插件和扩展&#xff0c;提供更为详实和全面的示例代码&#xff0c;助力读者更好地理解…

DPO讲解

PPO算法的pipeline冗长&#xff0c;涉及模型多&#xff0c;资源消耗大&#xff0c;且训练极其不稳定。DPO是斯坦福团队基于PPO推导出的优化算法&#xff0c;去掉了RW训练和RL环节&#xff0c;只需要加载一个推理模型和一个训练模型&#xff0c;直接在偏好数据上进行训练即可&am…

计算机出现xinput1_3.dll缺失、五种详细解决方案

在电脑使用过程中&#xff0c;我们可能会遇到一些错误提示&#xff0c;其中之一就是xinput1_3.dll丢失。这个错误提示通常会导致游戏或其他应用程序无法正常运行。那么&#xff0c;xinput1_3.dll文件到底是什么&#xff1f;它丢失会对电脑产生什么影响&#xff1f;本文将为您详…

1688订单详情对接及实现方案

一、引言 1688作为中国最大的B2B电子商务平台之一&#xff0c;提供了丰富的商品信息和订单详情。通过与1688订单详情接口的对接&#xff0c;电商企业可以实时获取订单详细信息&#xff0c;以便更好地了解客户需求、优化运营策略以及提高服务质量。本文将详细介绍如何实现1688订…

《数据结构、算法与应用C++语言描述》-机器调度-最长处理时间(LPT)-堆应用

机器调度 完整可编译运行代码见&#xff1a;Github::Data-Structures-Algorithms-and-Applications/_28LongestProcessingTime 问题描述 一个工厂具有 m台一模一样的机器。我们有n 个任务需要处理。设作业i的处理时间为 t i t_i ti​&#xff0c;这个时间包括把作业放入机器…

【PostgreSQL】从零开始:(十二)PostgreSQL-数据库对象关系及定义

从图中我们可以看出服务器对象的关系 现在我们来了解它们的定义 数据库服务器(Server) 数据库服务器是一种用来存储、管理和查询大量数据的服务器。它是一个独立的计算机系统&#xff0c;运行数据库管理系统&#xff08;DBMS&#xff09;软件&#xff0c;并提供对数据库的访问…

【ECMAScript笔记二】运算符分类,流程控制(顺序结构、分支结构、循环结构)

文章目录 4 运算符4.1 算术运算符4.2 递增和递减运算符4.3 比较运算符4.4 逻辑运算符4.5 赋值运算符4.6 运算优先级 5 流程控制5.1 顺序结构5.2 分支结构5.2.1 if 语句5.2.2 switch 语句 5.3 循环结构5.3.1 for循环5.3.2 while循环5.3.3 do while循环5.3.4 continue和break 5.4…

数据科学知识库

​ 我的博客是一个技术分享平台&#xff0c;涵盖了机器学习、数据可视化、大数据分析、数学统计学、推荐算法、Linux命令及环境搭建&#xff0c;以及Kafka、Flask、FastAPI、Docker等组件的使用教程。 在这个信息时代&#xff0c;数据已经成为了一种新的资源&#xff0c;而机…

1.新入手的32位单片机资源和资料总览

前言&#xff1a; 学了将近1年的linux驱动和uboot&#xff0c;感觉反馈不足&#xff0c;主要是一直在学各种框架&#xff0c;而且也遇到了门槛&#xff0c;比如驱动部分&#xff0c;还不能随心所欲地编程&#xff0c;原因是有些外设的原理还不够深刻、有些复杂的底层驱动的代码…

java springboot 内存级数据库 H2 创建表并添加数据演示

好 上文 java简述springboot通过配合初始化H2数据库并完成登录 带着大家登进了 h2数据库 这里需要强调 你只需要第一次加上 datasource:url: jdbc:h2:~/testhikari:driver-class-name: org.h2.Driverusername: rootpassword: 123456这些 因为它要初始化 你后面再启动 去掉这些…

C语言预处理详解及其指令

预处理详解 1.预定义符号2.#define定义常量基本使用方法举例子如果在define定义的表示符后面加上分号会发生什么&#xff1f;用一下来解释 3. #define定义宏举例例1例2 4. 带有副作用的宏参数例如: 5. 宏替换的规则6. 宏函数的对比宏和函数的一个对比 7. #和##7.1 #运算符7.2 #…

shell子进程管理

简介 在我们平时写代码过程中&#xff0c;可能经常会遇到串行执行速度慢 &#xff0c;串行无法执行多个任务&#xff0c;这时便需要使用子进程同时执行。使用父进程创建子进程时&#xff0c;子进程会复制父进程的内存、文件描述符和其他相关信息。当然&#xff0c;子进程可以独…

2023年全球运维大会(GOPS深圳站)-核心PPT资料下载

一、峰会简介 1、大会背景与概述 全球运维大会&#xff08;GOPS&#xff09;是运维领域最具影响力的国际盛会&#xff0c;每年都会汇聚世界各地的运维专家、企业领袖、技术爱好者&#xff0c;共同探讨运维技术的最新发展、最佳实践以及面临的挑战。2023年GOPS深圳站作为该系列…

亚马逊云科技re:Invent推出生成式AI技术堆栈及关键服务和工具

亚马逊云科技于29日推出“生成式AI技术堆栈”后&#xff0c;又在30日的re:Invent 2023大会上宣布了一系列支持这一全新堆栈的关键服务和工具。 亚马逊云科技数据和人工智能副总裁Swami Sivasubramanian在主题演讲中&#xff0c;将生成式人工智能与“超新星爆炸”进行了比较&am…

HttpRunner接口自动化测试框架

简介 HttpRunner是一款面向 HTTP(S) 协议的通用测试框架&#xff0c;只需编写维护一份 YAML/JSON 脚本&#xff0c;即可实现自动化测试、性能测试、线上监控、持续集成等多种测试需求。 项目地址&#xff1a;GitHub - httprunner/httprunner: HttpRunner 是一个开源的 API/UI…

Apache SeaTunne简介

Apache SeaTunne简介 文章目录 1.Apache SeaTunne是什么&#xff1f;1.1[官网](https://seatunnel.apache.org/)1.2 项目地址 2.架构3.特性3.1 丰富且可扩展的连接器和插件机制3.2 支持分布式快照算法以确保数据一致性3.3 支持流、批数据处理&#xff0c;支持全量、增量和实时数…

Web前端-HTML(常用标签)

文章目录 1. HTML常用标签1.1 排版标签1&#xff09;标题标签h (熟记)2&#xff09;段落标签p ( 熟记)3&#xff09;水平线标签hr(认识)4&#xff09;换行标签br (熟记)5&#xff09;div 和 span标签(重点)6&#xff09;排版标签总结 1.2 标签属性1.3 图像标签img (重点)1.4 链…