基于ASF-YOLO融合空间特征和尺度特征的新型注意力尺度序列融合模型开发构建医学场景下细胞分割检测识别系统,以【BCC、DSB2018数据集为基准】

news2024/11/24 19:58:30

作者提出了一种新的基于注意尺度序列融合的YOLO框架(ASF-YOLO),该框架结合了空间和尺度特征,实现了准确快速的细胞实例分割。基于YOLO分割框架,我们使用尺度序列特征融合(SSFF)模块来增强网络的多尺度信息提取能力,并使用三重特征编码器(TPE)模块来融合不同尺度的特征图以增加详细信息。我们进一步引入了一种通道和位置注意机制(CPAM)来集成SSFF和TPE模块,该模块专注于信息通道和空间位置相关的小对象,以提高检测和分割性能。在两个细胞数据集上的实验验证表明,所提出的ASFYOLO模型具有显著的分割精度和速度。在2018年数据科学碗数据集上,它实现了0.91的盒mAP、0.887的掩码mAP和47.3 FPS的推理速度,优于最先进的方法。

首先看下实例效果:

官方论文在这里,如下所示:

YOLO框架一般由backbone、neck和head三个主要组件构成。backbone网络是卷积神经网络,用于从不同的粒度下提取图像特征。CSPDarknet53是基于YOLOv4进行改进的backbone网络,被用作YOLOv5的主干网络。它包含了C3模块(包括3个卷积层)和ConvBNSiLU模块。在YOLOv5和YOLOv8的backbone中,有5个级别的特征提取分支:P1、P2、P3、P4和P5,与YOLO网络的输出相关联。YOLOv5 v7和YOLOv8是基于YOLO的主流架构之一,不仅可以用于检测和分类任务,还可以处理分割任务。 

作者开发了一种新颖的特征融合网络架构,由两个主要组件网络组成,可以提供小目标分割的互补信息:
SSSF模块,它将来自多个尺度图像的全局或高级语义信息组合在一起;
TFE模块,它可以捕捉小目标目标的局部精细细节。将局部和全局特征信息相结合可以产生更准确的分割图。 

为了识别密集重叠的小目标,一种方法是通过放大图像以参考和比较不同尺度下的形状或外观变化。然而,由于YOLO的backbone网络中的不同特征层具有不同的尺寸,传统的FPN融合机制只对小尺寸特征图进行上采样,并将其添加到前一层特征中,从而忽略了较大尺寸特征层中丰富的详细信息。为此,研究人员提出了TFE(Texture Feature Enhancement)模块,它将大、中、小尺寸的特征进行分离,并添加了较大尺寸的特征图,然后进行特征放大以增强详细特征信息。 

为了整合详细特征信息和多尺度特征信息,研究人员提出了CPAM(Channel and Position Attention Module)。CPAM的结构如图5所示,它由两个部分组成。第一个部分是通道注意网络,它从TFE(输入1)接收输入,用于提取不同通道中包含的代表性特征信息。第二个部分是位置注意网络,它接收来自通道注意网络和SSFF(输入2)的输出,并进行叠加,用于引入位置信息。通过这种方式,CPAM能够融合不同注意力机制,综合利用通道和位置信息,以提高目标识别的性能。

想要进一步了解论文详情,建议还是自行移步阅读原论文,这里就不再赘述了。

作者同时开源了项目,地址在这里,如下所示:

目前还没有什么热度。

这里主要是基于两个医学场景下的数据集来进行实验的,简单看下数据集:

【BCC】

【DSB2018】

使用如下训练参数设置进行训练:

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov5l-seg.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/segment/asf-yolo.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/bcc.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--noplots', action='store_true', help='save no plot files')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default='runs/train-seg', help='save to project/name')
parser.add_argument('--name', default='improve', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')

# Instance Segmentation Args
parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')

return parser.parse_known_args()[0] if known else parser.parse_args()

训练启动,日志输出如下:

训练完成截图如下所示:
 

等待训练完成后我们来看下具体的结果内容。

【BCC实验结果】

【F1】

F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【Recall】

召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【Precision】

精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【PR】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Batch实例】

到这里我们完成了在BCC数据集的完整实验内容,接下来我们开始构建基于DSB2018数据集上的实验内容,由于整体的建模操作过程同BCC数据集是完全一致的,所以这里就不再赘述相关节点的内容,直接来看对应的实践,训练输出如下:

训练完成截图如下:

等待训练完成后我们来看下具体的结果内容。

【DSB2018实验结果】

【F1】

F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【Recall】

召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【Precision】

精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【PR】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Batch实例】

整体训练可视化如下:

为了使用方便,这里也开发了对应的可视化界面系统,实例推理效果如下所示:

到这里本文的实践学习就全部结束了,感兴趣的话也都可以自己动手实践一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1316718.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Java代码审计】XSS篇

【Java代码审计】XSS篇 1.Java中XSS常见触发位置2.反射型XSS3.存储型XSS4.XSS漏洞修复 1.Java中XSS常见触发位置 XSS漏洞产生后必然会有相关的输入/输出&#xff0c;因此我们只需快速找到这些输入/输出点&#xff0c;即可快速地进行跟踪发现漏洞。输入在Java中通常使用“reque…

基于Java SSM框架实现疫情居家办公OA系统项目【项目源码+论文说明】

基于java的SSM框架实现疫情居家办公OA系统演示 摘要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识…

基于循环神经网络长短时记忆(RNN-LSTM)的大豆土壤水分预测模型的建立

Development of a Soil Moisture Prediction Model Based on Recurrent Neural Network Long Short-Term Memory in Soybean Cultivation 1、介绍2、方法2.1 数据获取2.2.用于预测土壤湿度的 LSTM 模型2.3.土壤水分预测的RNN-LSTM模型的建立条件2.4.预测土壤水分的RNN-LSTM模型…

微信小程序置顶导航,替代原生导航栏

效果图&#xff1a; 思路&#xff1a;Navigation是小程序的顶部导航组件&#xff0c;当页面配置navigationStyle设置为custom的时候可以使用此组件替代原生导航栏&#xff0c;wx.getSystemInfoSync获取可使用窗口高度 wxml代码&#xff1a; <!-- 头部 --> <view cla…

【docker 】Compose 使用介绍

Docker Compose Docker Compose文档 Docker Compose GitHub地址 Docker Compose 是用于定义和运行多容器 Docker 应用程序的工具。通过 Compose&#xff0c;您可以使用 YML 文件来配置应用程序需要的所有服务。然后&#xff0c;使用一个命令&#xff0c;就可以从 YML 文件配…

在React中实现好看的动画Framer Motion(案例:跨DOM元素平滑过渡)

前言 介绍 Framer Motion 是一个适用于 React 网页开发的动画库&#xff0c;它可以让开发者轻松地在他们的项目中添加复杂和高性能的动画效果。该库提供了一整套针对 React 组件的动画、过渡和手势处理功能&#xff0c;使得通过声明式的 API 来创建动画变得简单直观。 接下来…

modbus 通信协议介绍与我的测试经验分享

1、简介 Modbus 协议是一种通信协议&#xff0c;用于工业自动化系统中的设备间通信。该协议最初由 Modicon 公司开发&#xff0c;并于 1979 年发布。 Modbus 协议通过串行通信格式进行通信&#xff0c;在物理层上支持 RS-232、RS-422 和 RS-485 等多种通信方式。在协议层面&am…

YashanDB 携智慧政务方案亮相数字政府建设与数字湾区发展成果博览会

由广东省人民政府主办的第二届数字政府建设峰会暨数字湾区发展成果博览会于 12月8日-10日在广州举办。作为数字政府、智慧城市建设的核心支撑力量&#xff0c;深算院携单机/主备、共享集群、空间数据库等 YashanDB系列产品亮相本次博览会&#xff0c;展示最新的研发成果、场景应…

spring6 基于xml自动装配

目录结构 代码 UserContronller.java package bean.auto.controller;import bean.auto.service.UserService; import bean.auto.service.UserServiceImpl;public class UserContronller {private UserService userService;public void setUserService(UserService userServ…

通过“待办事项列表项目”快速学习Pyqt5的一些特性

Pyqt5相关文章: 快速掌握Pyqt5的三种主窗口 快速掌握Pyqt5的2种弹簧 快速掌握Pyqt5的5种布局 快速弄懂Pyqt5的5种项目视图&#xff08;Item View&#xff09; 快速弄懂Pyqt5的4种项目部件&#xff08;Item Widget&#xff09; 快速掌握Pyqt5的6种按钮 快速掌握Pyqt5的10种容器&…

持续集成交付CICD:Jenkins流水线操作Harbor仓库

目录 一、实验 1.Jenkins主节点安装Docker 2.Jenkins主节点安装Harbor 3.Jenkins从节点安装Docker 4.Jenkins流水线操作Harbor仓库 二、问题 1.Jenkins主节点登录Harbor仓库报错 2.Jenkins流水线里从节点操作docker报错 3.Jenkins流水线里从节点远程登录Harbor仓库报错…

西南科技大学数据库实验二(表数据插入、修改和删除)

一、实验目的 &#xff08;1&#xff09;学会用SQL语句对数据库进行插入、修改和删除数据操作 &#xff08;2&#xff09;掌握insert、update、delete命令实现对表数据插入、修改和删除等更新操作。 二、实验任务 创建数据库&#xff0c;并创建Employees表、Departments表和…

佛山IBM System x3550 M4服务器维修检查

案例背景&#xff1a; 一家位于东莞的制造公司&#xff0c;在其佛山分厂中安装了一台IBM X3550 M4服务器作为其关键业务设备。该服务器负责管理和存储公司的生产数据、ERP系统和供应链数据。在生产过程中&#xff0c;该服务器突然发生了故障&#xff0c;导致佛山分厂的生产中断…

maven+spock

pom配置 话说JunitMockito的组合用起来是真难用&#xff0c;还是Spock的简单&#xff0c;尤其是参数化的测试。junit的Parameter是鸡肋&#xff0c;杂恶心&#xff1b;Theories用来也不爽。 <?xml version"1.0" encoding"UTF-8"?><project xm…

如何预防最新的.locked、.locked1勒索病毒感染您的计算机?

尊敬的读者&#xff1a; 近期&#xff0c;网络安全领域迎来一股新潮——.locked、.locked1勒索病毒的威胁&#xff0c;其先进的加密技术令人生畏。本文将深入剖析.locked、.locked1勒索病毒的阴谋&#xff0c;提供特色数据恢复策略&#xff0c;并揭示锁定恶劣行径的先锋预防手…

如何实现订单自动取消

由于Redis具有过期监听的功能&#xff0c;于是就有人拿它来实现订单超时自动关闭的功能&#xff0c;但是这个方案并不完美。今天来聊聊11种实现订单超时自动关闭的方案&#xff0c;总有一种适合你&#xff01;这些方案并没有绝对的好坏之分&#xff0c;只是适用场景的不大相同。…

linux系统启动时运行web程序

1.修改rc.local文件 执行命令如果找不到会报错command not found &#xff0c;使用全路径即可 找不到的话 可以使用which 命令 找到路径 后台查看执行日志 2.修改rc.local文件的权限 chmod x rc.local 然后reboot 可以查到进程和启动日志

设计模式 简单工厂 工厂方法模式 抽象工厂模式

工厂模式介绍 工厂模式是我们最常用的实例化对象模式了&#xff0c;是用工厂方法代替new操作的一种模式。它是创建型模式。 简单工厂 简单工厂模式是指由一个工厂对象决定创建出哪一种产品类的实例, 但它不属于GOF 23种设计模式 简单工厂适用于工厂类负责创建的对象较少的场景,…

Docker部署wordpress和Jenkins

准备机器&#xff1a; 192.168.58.151 &#xff08;关闭防火墙和selinux&#xff09; 安装好docker服务 &#xff08;详细参照&#xff1a;http://t.csdnimg.cn/usG0s 中的国内源安装docker&#xff09; 部署wordpress: 创建目录&#xff1a; [rootdocker ~]# mkdi…

2043杨辉三角(C语言)

目录 一&#xff1a;题目 二&#xff1a;思路分析 三&#xff1a;代码 一&#xff1a;题目 二&#xff1a;思路分析 1.通过杨辉三角&#xff0c;不难发现中间的数等于肩头两个数之和 2.但是当我们的输出结果&#xff0c;与杨辉三角的形式有所不同&#xff0c;但是我们可以找…