【C++干货铺】会搜索的二叉树(BSTree)

news2025/1/12 0:49:24

=========================================================================

个人主页点击直达:小白不是程序媛

C++系列专栏:C++干货铺

代码仓库:Gitee

=========================================================================

目录

前言:

二叉搜索树

二叉搜索树概念

二叉搜索树操作

二叉搜索树的查找

 二叉搜索树的插入

二叉搜索树元素的删除

​二叉搜索树的实现

BSTree结点

BSTree框架

拷贝构造函数和无参构造函数

析构函数

赋值重载(operator=)

插入Insert ()

查找Find()

删除()

 中序遍历

二叉搜索树的应用

二叉搜索树的性能分析


前言:

在C语言的数据结构期间我们介绍过二叉树的一些概念;并且实现了其链式结构和实现了前、中、后序的遍历;有些OJ题使用C语言方式实现比较麻烦,比如有些地方要返回动态开辟的二维数组,非常麻烦。因此本节借二叉树搜索树,对二叉树部分进行收尾总结。并且后面的map和set特性需要先铺垫二叉搜索树,而二叉搜索树也是一种树形结构;二叉搜索树的特性了解,有助于更好的理解map和set的特性。


二叉搜索树

二叉搜索树概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树


二叉搜索树操作

二叉搜索树的中序遍历根据其存储结构是排好序的

  • 如果左边存储比根小的数字右边存储比根大的数字,中序遍历的结果是升序的;
  • 如果左边存储比根大的数组右边存储比根小的数字,中序遍历的结果是降序的;
int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};

注意:二叉搜索树是没有“修改”的,因为如果随便修改一个数据,整棵树都要重新去实现。 

二叉搜索树的查找

  • 从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
  • 最多查找高度次,走到空,还没找到,这个值不存在。 

注意:

二叉搜索树有一个特别重要的特点树中没有两个相同的元素。

 二叉搜索树的插入

插入的具体过程如下:

  • 树为空,则直接新增节点,赋值给root指针
  • 树不空,按二叉搜索树性质查找插入位置,插入新节点 

二叉搜索树元素的删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情
况:

  • 要删除的结点无孩子结点
  • 要删除的结点只有左孩子结点
  • 要删除的结点只有右孩子结点
  • 要删除的结点有左、右孩子结点

看起来有待删除节点有4中情况,实际情况1可以与情况2或者3合并起来,因此真正的删除过程
如下: 

  • 情况b:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点--直接删除
  • 情况c:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点--直接删除
  • 情况d:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题--替换法删除


二叉搜索树的实现

BSTree结点

节点中包含两个该节点类型的指针,分别代表着指向左右孩子和节点中存储的值。

template <class K>
struct BSTNode
{
	BSTNode<K>* _left;
	BSTNode<K>* _right;
	K _key;
    //结点的构造函数
	BSTNode(const K& key)
		:_left(nullptr)
		, _right(nullptr)
		, _key(key)
	{
	}
};

BSTree框架

成员变量为结点类型的指针。

template<class K>
class BST
{
	typedef BSTNode<K> Node;

private:
	Node* _root=nullptr;
};

拷贝构造函数和无参构造函数

因为我们自己写了拷贝构造函数,所以编译器不会默认生成无参构造函数。在C++11中可以让默认构造函数等于default,让编译器再次自动生成默认构造函数

拷贝一个二叉搜索树开始要使用递归进行调用的。 

    BST() = default;
	BST(const BST<K>& st)
	{
		_root=Copy(st._root);
	}

析构函数

因为我们在类外面显示调用根节点很麻烦,直接在类内部以根节点为参数直接递归实现。

public:

    ~BST()
	{
		Destory(_root);
	}
private:
​
    void  Destory(Node*& root)
	{
		if (root == nullptr)
		{
			return;
		}
		Destory(root->_left);
		Destory(root->_right);
		delete root;
		root = nullptr;
	}

​

赋值重载(operator=)

swap函数是库std中的函数,深拷贝

	BST<K>& operator=(BST<K> t)
	{
		swap(_root, t._root);
		return *this;
	}

插入Insert ()

非递归版本

bool Insert(const K& key)
	{
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			parent = cur;
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(key);
		if (parent->_key < key)
		{
			parent->_right = cur;
		}
		else if (parent->_key > key)
		{
			parent->_left = cur;
		}
	}
  • 首先还是要判断传入的根结点是否为空,如果为空直接开辟一个新的结点即可;
  • 如果不为空,先创建一个父亲的结点便于插入的时候做修改;然后在创建一个结点从根节点开始根据二叉搜索树的特点开始找适合插入的位置,当找到时开辟一个新的结点,然后让合适位置的根节点指向开辟好的新节点即可;

递归版本

pbulic:

    bool InsertR(const K & key)
	{
		return _InsertR(_root, key);
	}
private:
​
    bool _InsertR(Node*& root,const K& key)
	{
		if (root == nullptr)
		{
			root = new Node(key);
			return true;
		}
		if (root->_key < key)
		{
			return _InsertR(root->_right, key);
		}
		else if (root->_key > key)
		{
			return _InsertR(root->_left, key);
		}
		else
		{
			return false;
		}
	}

​

这里的递归也是根据二叉搜索树左右两边孩子的特点巧妙使用引用来实现的,每次递归的参数为上一个根节点指向左孩子或者右孩子的引用,去掉了记录父亲节点。 

查找Find()

非递归版本

也是根据二叉搜索树左右孩子的特点实现的。如果查找的值比根结点的值大则和根节点的右孩子比较,反之;

注意:搜索二叉树中是没有两个相同的值的。

bool find(const K& key)
	{
		if (_root == nullptr)
		{
			return false;
		}
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return true;
			}
		}
		return false;
	}

递归版本

public :

    bool FindR(const K & key)
	{
		return _FindR(_root, key);
	}
private :

​
    bool _FindR(Node* root, const K& key)
	{
		if (root == nullptr)
		{
			return false;
		}
		if (root->_key < key)
		{
			return _FindR(_root->_right, key);
		}
		else if (root->_key > key)
		{
			return _FindR(root->_left, key);
		}
		else
		{
			return true;
		}
	}

​

删除()

非递归版本

删除这里的情况还比较复杂,先要根据上面查找函数的思路找到结点;

  • 如果左孩子为空,且该结点为父节点的左孩子,则让父节点指向的左孩子为该节点的右支;删掉此节点。如果该结点为父节点的右孩子,则让父节点指向的右孩子为该节点右支;删掉此节点。
  • 如果右孩子为空,且该节点为父节点的左孩子,则让父节点指向的左孩子为该节点的右支;删掉此节点。如果该节点为父节点的右孩子,则让父节点指向的左孩子为该节点的左支;删掉此节点。
  • 如果左右孩子都不为空,则要取左支最大的(最右结点)或者取右支最小的(最左结点),这里实现的是取右支最小的;先进入该结点的右边,然后使用循环找到最左结点;对该节点和其父节点的值进行交换,然后按照上面左孩子为空调整其父节点指向的孩子结点。然后删除结点。
bool Erase(const K& key)
	{
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				//左为空
				if (cur->_left == nullptr)
				{
					//删除根节点的值
					if (cur == _root)
					{
						_root = cur->_right;
					}
					else
					{
						if (parent->_left == cur)
						{
							parent->_left = cur->_right;
						}
						else if (parent->_right == cur)
						{
							parent->_right = cur->_right;
						}
					}
					delete cur;
				}
				//右为空
				else if (cur->_right == nullptr)
				{
					//删除根节点的值
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						if (parent->_left == cur)
						{
							parent->_left = cur->_left;
						}
						else if (parent->_right == cur)
						{
							parent->_right = cur->_left;
						}
					}
					delete cur;
				}
				else
				{
					//右树的最小值
					Node* subleft = cur->_right;
					Node* parent = cur;
					while (subleft->_left)
					{
						parent = subleft;
						subleft = subleft->_left;
					}
					swap(cur->_key, subleft->_key);
					if (subleft == parent->_left)
					{
						parent->_left = subleft->_right;
					}
					else
					{
						parent->_right = subleft->_right;
					}
					delete subleft;
				}
				return true;
			}
		}
		return false;
	}

递归版本

public:
    bool EraseR(const K&key)
	{
		return _EraseR(_root, key);
	}
private:

    bool _EraseR(Node*& root, const K& key)
	 {
		 if (root == nullptr)
		 {
			 return false;
		 }
		 if (root->_key < key)
		 {
			 return _EraseR(root->_right, key);
		 }
		 else if (root->_key > key)
		 {
			return  _EraseR(root->_left, key);
		 }
		 else
		 {
			 if (root->_left == nullptr)
			 {
				 Node* del = root;
				 root = root->_right;
				 delete del;
				 return true;
			 }
			 else if (root->_right == nullptr)
			 {
				 Node* del = root;
				 root = root->_left;
				 delete del;
				 return true;
			 }
			 else
			 {
				 Node* subleft = root->_right;
				 while (subleft->_left)
				 {
					 subleft = subleft->_left;
				 }
				 swap(root->_key, subleft->_key);
				 return _EraseR(root->_right, key);
			 }
		 }

	 }

 中序遍历

public:
    void Inorder()
	{
		_Inorder(_root);
		cout << endl;
	}
private:
​
    void _Inorder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_Inorder(root->_left);
		cout << root->_key << " ";
		_Inorder(root->_right);
	}

​

二叉搜索树的应用

1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。
比如给一个单词word,判断该单词是否拼写正确,具体方式如下:

  • 以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树
  • 在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

2. KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见:

  • 比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;
  • 再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是<word, count>就构成一种键值对。 

二叉搜索树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二
叉搜索树的深度的函数,即结点越深,则比较次数越多。但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树: 

  • 最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:O(logN)
  • 最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:O(N);如果退化成了单支树,那么二叉搜索树的性能就失去了。此时就需要用到即将登场的 AVL 树和红黑树了。

今天对二叉搜索树的介绍、使用、模拟实现的分享到这就结束了,希望大家读完后有很大的收获,也可以在评论区点评文章中的内容和分享自己的看法。您三连的支持就是我前进的动力,感谢大家的支持!! !

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1316038.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C#学习笔记 - C#基础知识 - C#从入门到放弃

C# 持续更新中~~ 上次更新日期&#xff1a;20231215 第1节 C# 简单介绍1.1 C# 是什么1.2 C# 强大的编程功能1.3 C# 发展史1.4 C#与Java区别 第2节 C#基本语法2.1 C#程序结构2.2 C# 结构解析2.3 命名空间及标识符、关键字2.3.1 别名的使用2.3.2 标识符2.3.3 C#关键字 第3节 变量…

树莓派(Raspberry Pi)4B密码忘记了,怎么办?

树莓派长时间不用&#xff0c;导致密码忘记了&#xff0c;这可咋整&#xff1f; 第1步&#xff1a;取出SD卡 将树莓派关机&#xff0c;移除sd卡&#xff0c;使用读卡器&#xff0c;插入到你的电脑。 第2步&#xff1a;编辑 cmdline.txt 在PC上打开SD卡根目录&#xff0c;启动…

windows电脑半夜突然睡眠自动唤醒的问题查找与治理

遇见几次了&#xff0c;半夜起来上厕所&#xff0c;发现休眠的电脑居然自己开了&#xff0c;还得跑过去把电脑再休眠&#xff0c;很烦。昨天晚上居然自动唤醒两次&#xff0c;忍无可忍了&#xff0c;于是开始查找原因。 查询原因如下&#xff0c;解决方面也在后面。 固件 S3 计…

电子元器件-电阻

电阻 采样限流定时保护上拉 链接: 另类方式讲电阻&#xff01; 采样 应用场景&#xff0c;如我们在调节汽车座椅的过程中&#xff0c;如果座椅的行程达到尽头&#xff0c;此时控制座椅运动的电机就会停止&#xff0c;因而导致电机的电流非常大。如果正常运转的电流为1A&#…

大家都崩,美团不崩:其高可用架构,巧夺天工!

说在前面 在40岁老架构师尼恩的50读者群中&#xff0c;一直在指导大家简历&#xff0c;指导大家职业升级。 前几天&#xff0c;指导了一个40岁老伙伴拿到年薪100W offer&#xff0c;小伙伴的优势在异地多活。 在简历指导的过程中&#xff0c;尼恩发现&#xff1a; 异地多活的…

alibaba druid连接池

alibaba druid连接池 如果是SpringBoot 3.x&#xff0c;使用以下依赖 com.alibaba druid-spring-boot-3-starter ${druid-spring-boot-starter.version} application.yml配置 登录页面配置 切面监控springboot类 对 Web 请求的监控 配置filter&#xff0c;收集统计信息&#x…

DevEco Studio中配置代码片段

进入设置&#xff08;快捷键CtrlAltS&#xff09; 选择Editor > Live Templates 添加片段 其中 $END$ 代表光标首次出现位置 一定要选择适用语言&#xff01;&#xff01;&#xff01; 最后Apply > OK 即可&#xff0c;输入快捷命令回车即可快速生成代码片段。

权重衰减(Weight Decay)

在深度学习中&#xff0c;权重衰减&#xff08;Weight Decay&#xff09;是一种常用的正则化技术&#xff0c;旨在减少模型的过拟合现象。权重衰减通过向损失函数添加一个正则化项&#xff0c;以惩罚模型中较大的权重值。 一、权重衰减 在深度学习中&#xff0c;模型的训练过程…

Flutter在Visual Studio Code上首次创建运行应用

一、创建Flutter应用 1、前提条件 安装Visual Studio Code并配置好运行环境 2、开始创建Flutter应用 1)、打开Visual Studio Code 2)、打开 View > Command Palette。 3)、在搜索框中输入“flutter”&#xff0c;弹出内容如下图所示&#xff0c;选择“ Flutter: New Pr…

SoloLinker第一次使用记录,解决新手拿到板子的无所适从

本文目录 一、简介二、进群获取资料2.1 需要下载资料2.2 SDK 包解压 三、SDK 编译3.1 依赖安装3.2 编译配置3.3 启动编译3.4 编译后的固件目录 四、固件烧录4.1 RV1106 驱动安装4.2 打开烧录工具4.3 进入boot 模式&#xff08;烧录模式&#xff09;4.4 烧录启动固件4.5 烧录升级…

浏览器录屏技术探究与实践

一、引言 随着网络技术的快速发展&#xff0c;浏览器已经成为人们获取信息的主要途径。浏览器录屏技术作为一种新兴的媒体捕捉和分享方式&#xff0c;逐渐受到广泛关注。本文将对浏览器录屏技术进行深入探讨&#xff0c;分析其实现原理&#xff0c;并给出实际应用中的解决方案…

MC-30A (32.768 kHz用于汽车应用的晶体单元)

MC-30A 32.768 kHz用于汽车应用的晶体&#xff0c;车规晶振中的热销型号之一。该款石英晶体谐振器&#xff0c;可以在-40 to 85 C的温度内稳定工作&#xff0c;能满足起动振动的要求。同时满足AEC-Q200无源元件质量标准认证&#xff0c;满足汽车仪表系统的所有要求。 频率范围…

内网穿透工具,如何保障安全远程访问?

内网穿透工具是一种常见的技术手段&#xff0c;用于在没有公网IP的情况下将本地局域网服务映射至外网。这种工具的使用极大地方便了开发人员和网络管理员&#xff0c;使得他们能够快速建立起本地服务与外部网络之间的通信渠道。然而&#xff0c;在享受高效快捷的同时&#xff0…

win10电脑字体大小怎么设置?介绍四种方法

在Win10操作系统中&#xff0c;字体大小的设置对于用户来说是一个非常重要的问题。合适的字体大小能够保护我们的视力&#xff0c;提高我们的工作效率。本文将介绍几种常用的方法来调整Win10电脑的字体大小&#xff0c;帮助用户轻松设置自己喜欢的字体大小。 方法一&#xff1…

安装鸿蒙开发者工具DevEco Studio

1.进入官网下载工具 https://developer.harmonyos.com/cn/develop/deveco-studio/ 选择您电脑对应的系统下载即可 2.安装 很简单直接点击“next”,此处不做赘述 3.配置环境 安装完成后&#xff0c;打开DevEco Studio 会提示配置环境。安装node.js和ohpm 如果不小心关了&a…

linux性能优化-上下文切换

如何理解上下文切换 Linux 是一个多任务操作系统&#xff0c;它支持远大于 CPU 数量的任务同时运行&#xff0c;这是通过频繁的上下文切换、将CPU轮流分配给不同任务从而实现的。 CPU 上下文切换&#xff0c;就是先把前一个任务的 CPU 上下文&#xff08;CPU 寄存器和程序计数…

NO-IOT翻频,什么是翻频,电信为什么翻频

1.1 翻频迁移最终的目的就是减少网络的相互干扰&#xff0c;提供使用质量. 1.2 随着与日俱增的网络规模的扩大&#xff0c;网内干扰已成了影响网络的质量标准之一&#xff0c;为了保障电信上网体验&#xff0c;满足用户日益增长的网速需求,更好的服务客户&#xff0c;电信针对…

Git中stash的使用

Git中stash的使用 stash命令1. stash保存当前修改2. 重新使用缓存3. 查看stash3. 删除 使用场景 stash命令 1. stash保存当前修改 git stash 会把所有未提交的修改&#xff08;包括暂存的和非暂存的&#xff09;都保存起来. git stashgit stash save 注释2. 重新使用缓存 #…

Python 直观理解基尼系数

基尼系数最开始就是衡量人群财富收入是否均衡&#xff0c;大家收入平平&#xff0c;那就是很平均&#xff0c;如果大家收入不平等&#xff0c;那基尼系数就很高。 还是给老干部们讲的言简意赅。 什么是基尼系数 我们接下来直接直观地看吧&#xff0c;程序说话 # -*- coding:…