Backtrader 文档学习-Quickstart

news2025/1/9 1:45:46

Backtrader 文档学习-Quickstart

0. 前言

backtrader,功能十分完善,有完整的使用文档,安装相对简单(直接pip安装即可)。
优点是运行速度快,支持pandas的矢量运算;支持参数自动寻优运算,内置了talib股票分析技术指标库;支持多品种、多策略、多周期的回测和交易;支持pyflio、empyrica分析模块库、alphalens多因子分析模块库等;扩展灵活,可以集成TensorFlow、PyTorch和Keras等机器学习、神经网络分析模块。
缺点:backtrader学习起来相对复杂,编程过程中使用了大量的元编程(类class),如果Python编程基础不扎实(尤其是类的操作),学习困难。另外一点,BackTrader不更新。(更正一下,GitHub上是更新的,2023-04-19 更新的最新版本1.9.78.123
在这里插入图片描述

如果将backtrader包分解为核心组件,主要包括以下组成部分:

  • (1)数据加载(Data Feed):将交易策略的数据加载到回测框架中。
  • (2)交易策略(Strategy):该模块是编程过程中最复杂的部分,需要设计交易决策,得出买入/卖出信号。
  • (3)回测框架设置( Cerebro):
    需要设置:(i)初始资金(ii)佣金(iii)数据馈送(iv)交易策略(v)交易头寸大小。
  • (4)运行回测:运行Cerebro回测并打印出所有已执行的交易。
  • (5)评估性能(Analyzers):以图形和风险收益等指标对交易策略的回测结果进行评价。

官网说明资料详细,有演示用例,逐步跟着一步步学习。

Backtrader 官网文档

1. 两个基本概念

(1)Lines

“Lines”是backtrader回测的数据,由一系列的点组成,通常包括以下类别的数据:Open(开盘价), High(最高价), Low(最低价), Close(收盘价), Volume(成交量), OpenInterest(无的话设置为0)。Data Feeds(数据加载)、Indicators(技术指标)和Strategies(策略)都会生成 Lines。
价格数据中的所有”Open” (开盘价)按时间组成一条 Line。所以,一组含有以上6个类别的价格数据,共有6条 Lines。如果算上“DateTime”(时间,可以看作是一组数据的主键),一共有7条 Lines。当访问一条 Line 的数据时,会默认指向下标为 0 的数据。最后一个数据通过下标 -1 来访问,在-1之后是索引0,用于访问当前时刻。因此,在回测过程中,无需知道已经处理了多少条/分钟/天/月,”0”一直指向当前值,下标 -1 来访问最后一个值。
Lines包括一个或多个line,line是一系列的数据,在图中可以形成一条线(line),有6个列数据,就是股票的主要数据集,最后一列没有用。

Open, High, Low, Close, Volume, OpenInterest

包括索引列“DateTime”,日期时间类型,注意:Datetime类型,不是Date类型。

(2)Index 0 Approach

访问行中的值时,将使用索引0访问当前值;
“最后一个”输出值是用索引**-1**访问,index-1用于访问可迭代项/数组的“最后”项。

在Backtrader中提供了1个函数来度量已处理数据bar的长度:
len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。

(3)版本

通过 pip index versions backtrader 检查版本。
版本:backtrader (1.9.78.123)

pip index  versions backtrader
WARNING: pip index is currently an experimental command. It may be removed/changed in a future release without prior warning.
backtrader (1.9.78.123)
Available versions: 1.9.78.123, 1.9.77.123, 1.9.76.123, 1.9.75.123, 1.9.74.123

2. 基本使用

(1)初始设置现金
cerebro.broker.setcash(100000.0)
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import backtrader as bt

if __name__ == '__main__':
    cerebro = bt.Cerebro()
    cerebro.broker.setcash(100000.0)

    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    cerebro.run()

    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

因为没有任何策略,所以金额没有变化:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100000.00
(2)加载数据

示例使用的是Oracle的记录,实际使用,调整到国内数据。

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import datetime  # For datetime objects
import os.path  # To manage paths
import sys  # To find out the script name (in argv[0])

# Import the backtrader platform
import backtrader as bt

if __name__ == '__main__':
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Datas are in a subfolder of the samples. Need to find where the script is
    # because it could have been called from anywhere
    modpath = os.path.dirname(os.path.abspath(sys.argv[0]))
    datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt')

    # Create a Data Feed
    data = bt.feeds.YahooFinanceCSVData(
        dataname=datapath,
        # Do not pass values before this date
        fromdate=datetime.datetime(2000, 1, 1),
        # Do not pass values after this date
        todate=datetime.datetime(2000, 12, 31),
        reverse=False)

    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

编写一个从数据库中取数据的函数使用:
注意:数据库中交易日期是date ,backtrader的数据集要求是datetime ,必须做好转换才能载入数据。

from sqlalchemy import create_engine
def get_code (stock_code):
    engine_ts = create_engine(connect parameter) 
    
    # 执行sql操作
    sql = "select * from ts_stock t where t.stock_code=" + stock_code + ";"
        
    #stock_data = pd.read_sql(sql, con=engine_ts,index_col="date")  
    #因为BackTrader日期类型必须是datetime ,从数据库中读取的日期类型是date 。
    # 读数据,先不设置索引
    stock_data = pd.read_sql(sql, con=engine_ts) # ,index_col="date"

    # 增加一列,select 字段名是date,赋值到trade_date,同时转datetime类型
    stock_data['trade_date'] = pd.to_datetime(stock_data['date'], format='%Y%m%d %H:%M:%S')
    
    # 删除原来的date列
    stock_data.drop(columns=['date'])
    
    # 新datetime列作为索引列
    stock_data.set_index(['trade_date'], inplace=True)
    
    # 索引列改名
    stock_data.index.name='date'

    # 按backtrader 格式要求,第7列openinterest ,也可以不用
    # stock_data['openinterest'] = 0
    
    data = stock_data.sort_index(ascending=True)

    engine_ts.dispose()
    return(data)

if __name__ == '__main__':
    # Create a cerebro entity
    cerebro = bt.Cerebro()
	stock_hfq_df = get_code('000858') 
	#起止时间
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据

    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())    
(3)第一个策略 买入

在init方法中,可以使用载入的数据集,第一个数据是列表 self.datas[0] ,最后一个是 self.datas[-1] 。
self.dataclose=self.datas[0]。赋值close的引用,以后只需要一个间接引用dataclose ,就可以访问收盘值。
策略next方法将在系统时钟的每个bar上调用(self.datas[0]),直到符合策略条件,比如指标值设置,才能开始产生输出。
策略:
连续下跌三天,开始买入。
策略实施在next()方法中。

## 3.第一个策略
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import datetime  # For datetime objects
import os.path  # To manage paths
import sys  # To find out the script name (in argv[0])

# Import the backtrader platform
import backtrader as bt

# Create a Stratey
class TestStrategy(bt.Strategy):

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)
        print('%s, %s' % (dt.isoformat(), txt))

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close

    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])


if __name__ == '__main__':
    # Create a cerebro entity
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)
	# 五粮液测试
    stock_hfq_df = get_code('000858') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

调整:
输出都是close数据,数据显示比较多,都放到log文件中。 日志路径:

log_file = ‘./bt_log.txt’

修改TestStrategy 中的log方法,日志写入文件,便于查询。后不赘述。

## 3.第一个策略
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import datetime  # For datetime objects
import os.path  # To manage paths
import sys  # To find out the script name (in argv[0])

# Import the backtrader platform
import backtrader as bt
import os

# delete log file
def delete_file(filename):
    # if log file exist 
    if os.path.exists(filename):
        os.remove(filename)

# Create a Stratey
class TestStrategy(bt.Strategy):

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close

    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])


if __name__ == '__main__':
    
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)

    stock_hfq_df = get_code('000858') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

执行后,没有交易过程记录,都在日志文件中显示:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100000.00

再增加策略中的逻辑:
策略:连续三天下跌,开始买入操作

# Create a Stratey
class TestStrategy(bt.Strategy):

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
                

    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])
		
        if self.dataclose[0] < self.dataclose[-1]:
            # current close less than previous close

            if self.dataclose[-1] < self.dataclose[-2]:
                # previous close less than the previous close

                # BUY, BUY, BUY!!! (with all possible default parameters)
                self.log('BUY CREATE, %.2f' % self.dataclose[0])
                self.buy()

说明:

  • self.datas[0] 就是购买的股票。
  • 默认购买单位是1,每次买1股 。position
    sizer属性来记录,缺省值为1,就是每一次操作只买卖1股。当前order订单执行的时候,采用的价格是触发购买条件第二天的开盘价。
2018-01-02, Close, 80.58
2018-01-03, Close, 80.90
2018-01-04, Close, 82.99
2018-01-05, Close, 82.68
2018-01-08, Close, 82.20
2018-01-08, BUY CREATE, 82.20
2018-01-09, Close, 86.10
2018-01-10, Close, 88.90

5号第一天下跌,8日第二天连续下跌,触发购买信号,购买价格就是8号的收盘价,就是9日的开盘价。

  • 当前order执行的时候,没有收佣金。佣金如何设置后续还会说明。

可以看Strategy类有什么方法、属性:

method = ""
for i in dir(bt.Strategy):
    if i[:1] != '_' :
        method += i + ','
print(method)   

方法和属性:

IndType,ObsType,PriceClose,PriceDateTime,PriceHigh,PriceLow,PriceOpen,PriceOpenInteres,PriceVolume,StratType,add_timer,addindicator,addminperiod,advance,alias,aliased,array,backwards,bind2line,bind2lines,bindlines,buy,buy_bracket,cancel,clear,close,csv,extend,forward,frompackages,getdatabyname,getdatanames,getindicators,getindicators_lines,getobservers,getposition,getpositionbyname,getpositions,getpositionsbyname,getsizer,getsizing,getwriterheaders,getwriterinfo,getwritervalues,home,incminperiod,linealias,lines,minbuffer,next,next_open,nextstart,nextstart_open,notify_cashvalue,notify_data,notify_fund,notify_order,notify_store,notify_timer,notify_trade,once,oncestart,order_target_percent,order_target_size,order_target_value,packages,params,plotinfo,plotlabel,plotlines,position,positionbyname,positions,positionsbyname,prenext,prenext_open,preonce,qbuffer,reset,rewind,sell,sell_bracket,set_tradehistory,setminperiod,setsizer,sizer,start,stop,updateminperiod,
(4)还要卖出
  • Strategy对象提供了对默认数据的位置属性的访问
  • 方法buy和sell 都创建(尚未执行)执行订单
  • Strategy订单状态的变化将通过notify 方法调用
  • 卖出策略是:持仓5天,在第6天卖出
# 4.不但买入,还要卖出

# Create a Stratey
class TestStrategy(bt.Strategy):

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
        
        # To keep track of pending orders
        self.order = None                

    def notify_order(self, order):
		# 买卖订单的状态:提交和接受,通过broker控制    
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return

        # Check if an order has been completed
        # Attention: broker could reject order if not enough cash
        # broker如果资金不足将reject订单
        #订单状态是完成
        if order.status in [order.Completed]:
            #判断是买单,写日志
            if order.isbuy():
                self.log('BUY EXECUTED, %.2f' % order.executed.price)
           #判读是卖单,写日志
            elif order.issell():
                self.log('SELL EXECUTED, %.2f' % order.executed.price)

            #定义bar_executed 变量,记录处理bar的数量
            #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
            self.bar_executed = len(self)
            self.bar_buffer =  lenbuf(self)

        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Order Canceled/Margin/Rejected')

        # Write down: no pending order
        self.order = None

    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])

        # Check if an order is pending ... if yes, we cannot send a 2nd one
        if self.order:
            return

        # Check if we are in the market
        if not self.position:

            # Not yet ... we MIGHT BUY if ...
            #连续两天下跌,开始买入
            if self.dataclose[0] < self.dataclose[-1]:
                    # current close less than previous close

                    if self.dataclose[-1] < self.dataclose[-2]:
                        # previous close less than the previous close

                        # BUY, BUY, BUY!!! (with default parameters)
                        self.log('BUY CREATE, %.2f' % self.dataclose[0])

                        # Keep track of the created order to avoid a 2nd order
                        self.order = self.buy()

        else:

            # Already in the market ... we might sell
            if len(self) >= (self.bar_executed + 5):
                # SELL, SELL, SELL!!! (with all possible default parameters)
                self.log('SELL CREATE, %.2f' % self.dataclose[0])

                # Keep track of the created order to avoid a 2nd order
                self.order = self.sell()
                

if __name__ == '__main__':
    
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)

    stock_hfq_df = get_code('000858') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

执行流程,每次买卖数量都是1股:
5日下跌,6日下跌,创建买单,9日执行买单,是9日的开盘价。
买单时,处理的是6个bar 。
从10日开始,到16日是持仓第5天,创建卖单,17日,开盘卖出。
执行结果:

2018-01-02, Close, 80.58
2018-01-03, Close, 80.90
2018-01-04, Close, 82.99
2018-01-05, Close, 82.68
2018-01-08, Close, 82.20
2018-01-08, BUY CREATE, 82.20
2018-01-09, BUY EXECUTED, 82.40
2018-01-09, Bar executed :6
2018-01-09, Close, 86.10
2018-01-10, Close, 88.90
2018-01-11, Close, 87.96
2018-01-12, Close, 91.37
2018-01-15, Close, 91.75
2018-01-16, Close, 90.82
2018-01-16, SELL CREATE, 90.82
2018-01-17, SELL EXECUTED, 90.30
2018-01-17, Bar executed :12
... ...
... ...
... ...

订单的状态是通过Order对象的status属性来表示的。status属性可以是以下几个值之一:

  • Order.Submitted:订单已提交,但尚未成交。
  • Order.Accepted:订单已被接受,正在等待成交。
  • Order.Completed:订单已完全成交。
  • Order.Canceled:订单已取消。
  • Order.Margin:订单由于保证金不足而被拒绝。
  • Order.Rejected:订单被拒绝,原因可能是无效的价格、数量等。
(5)考虑券商佣金

在main函数中增加

    # Set the commission - 0.1% ... divide by 100 to remove the %
    cerebro.broker.setcommission(commission=0.001)

修改后的策略:
增加 方法 def notify_trade(self, trade):
用于计算毛利和纯利 ,通过trade对象计算。
查看在backtrader 目录下的trade.py源码:
定义属性:
pnl定义毛利,pnlcomm定义毛利-佣金

Attributes:
      - ``status`` (``dict`` with '.' notation): Holds the resulting status of
        an update event and has the following sub-attributes

        - ``status`` (``int``): Trade status
        - ``dt`` (``float``): float coded datetime
        - ``barlen`` (``int``): number of bars the trade has been active
        - ``size`` (``int``): current size of the Trade
        - ``price`` (``float``): current price of the Trade
        - ``value`` (``float``): current monetary value of the Trade
        - ``pnl`` (``float``): current profit and loss of the Trade
        - ``pnlcomm`` (``float``): current profit and loss minus commission

      - ``event`` (``dict`` with '.' notation): Holds the event update
        - parameters

        - ``order`` (``object``): the order which initiated the``update``
        - ``size`` (``int``): size of the update
        - ``price`` (``float``):price of the update
        - ``commission`` (``float``): price of the update
    '''
#5. 考虑佣金
# Create a Stratey
class TestStrategy(bt.Strategy):

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
        
        # To keep track of pending orders
        self.order = None                

        # To keep track of pending orders and buy price/commission
        self.order = None
        self.buyprice = None
        self.buycomm = None
        
        # 统计毛利和净利润
        self.gross = 0.0
        self.net = 0.0
        
    def notify_order(self, order):
        # 买卖订单的状态:提交和接受,通过broker控制    
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return

        # Check if an order has been completed
        # Attention: broker could reject order if not enough cash
        # broker如果资金不足将reject订单
        #订单状态是完成
        if order.status in [order.Completed]:
            #判断是买单,写日志
            if order.isbuy():
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                     order.executed.value,
                     order.executed.comm))
                
                self.buyprice = order.executed.price
                self.buycomm = order.executed.comm
                
           #判读是卖单,写日志
            elif order.issell():
                self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                         (order.executed.price,
                          order.executed.value,
                          order.executed.comm))

            #定义bar_executed 变量,记录处理bar的数量
            #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
            self.bar_executed = len(self)

            #日志显示处理的bar数量,逐渐递增。
            strlog = 'Bar executed :' + str(self.bar_executed)
            self.log(strlog)
            
        # 订单取消、保证金不足、退回
        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Order Canceled/Margin/Rejected')

        # Write down: no pending order
        # 处理完订单,无挂起订单,重置订单为空
        self.order = None

    def notify_trade(self, trade):
        # 如果不是平仓,返回
        if not trade.isclosed:
            return
        
        # 平仓计算成本和利润
        self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                 (trade.pnl, trade.pnlcomm))
        
        # 累计毛利和净利润
        self.gross += trade.pnl
        self.net =+ trade.pnlcomm
        
        self.log ('Accumulated profit,GROSS  %.2f, NET %.2f' % (self.gross,self.net))
        
    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])

        # Check if an order is pending ... if yes, we cannot send a 2nd one
        if self.order:
            return

        # Check if we are in the market
        if not self.position:

            # Not yet ... we MIGHT BUY if ...
            #连续两天下跌,开始买入
            if self.dataclose[0] < self.dataclose[-1]:
                    # current close less than previous close

                    if self.dataclose[-1] < self.dataclose[-2]:
                        # previous close less than the previous close

                        # BUY, BUY, BUY!!! (with default parameters)
                        self.log('BUY CREATE, %.2f' % self.dataclose[0])

                        # Keep track of the created order to avoid a 2nd order
                        self.order = self.buy()

        else:

            # Already in the market ... we might sell
            # 持仓5天
            if len(self) >= (self.bar_executed + 5):
                # SELL, SELL, SELL!!! (with all possible default parameters)
                self.log('SELL CREATE, %.2f' % self.dataclose[0])

                # Keep track of the created order to avoid a 2nd order
                self.order = self.sell()
                

执行结果:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100040.35

日志内容:

2018-01-02, Close, 80.58
2018-01-03, Close, 80.90
2018-01-04, Close, 82.99
2018-01-05, Close, 82.68
2018-01-08, Close, 82.20
2018-01-08, BUY CREATE, 82.20
2018-01-09, BUY EXECUTED, Price: 82.40, Cost: 82.40, Comm 0.01
2018-01-09, Bar executed :6
2018-01-09, Close, 86.10
2018-01-10, Close, 88.90
2018-01-11, Close, 87.96
2018-01-12, Close, 91.37
2018-01-15, Close, 91.75
2018-01-16, Close, 90.82
2018-01-16, SELL CREATE, 90.82
2018-01-17, SELL EXECUTED, Price: 90.30, Cost: 82.40, Comm 0.01
2018-01-17, Bar executed :12
2018-01-17, OPERATION PROFIT, GROSS 7.90, NET 7.88
2018-01-17, Accumulated profit,GROSS  7.90, NET 7.88
2018-01-17, Close, 86.01
... ... 
... ... 
2019-12-12, BUY CREATE, 127.78
2019-12-13, BUY EXECUTED, Price: 128.58, Cost: 128.58, Comm 0.01
2019-12-13, Bar executed :475
2019-12-13, Close, 129.52
2019-12-16, Close, 128.83
2019-12-17, Close, 130.25
2019-12-18, Close, 130.94
2019-12-19, Close, 129.86
2019-12-20, Close, 129.10
2019-12-20, SELL CREATE, 129.10
2019-12-23, SELL EXECUTED, Price: 127.50, Cost: 128.58, Comm 0.01
2019-12-23, Bar executed :481
2019-12-23, OPERATION PROFIT, GROSS -1.08, NET -1.11
2019-12-23, Accumulated profit,GROSS  36.59, NET -1.11
2019-12-23, Close, 128.14
2019-12-23, BUY CREATE, 128.14
2019-12-24, BUY EXECUTED, Price: 128.44, Cost: 128.44, Comm 0.01
2019-12-24, Bar executed :482
2019-12-24, Close, 128.70
2019-12-25, Close, 128.10
2019-12-26, Close, 128.15
2019-12-27, Close, 129.00
2019-12-30, Close, 132.82
2019-12-31, Close, 133.01
2019-12-31, SELL CREATE, 133.01

可以看出

2018-01-17, SELL EXECUTED, Price: 90.30, Cost: 82.40, Comm 0.01

盈利:90.30 - 82.40 = 7.90元,佣金0.01

2018-01-17, OPERATION PROFIT, GROSS 7.90, NET 7.88

毛利:7.90元 ,买卖两次,佣金0.02
净利润:7.90 - 0.02 = 7.88 元

(6)优化策略参数

在main函数中增加,每次购买10股,默认是1股。

# Add a FixedSize sizer according to the stake
cerebro.addsizer(bt.sizers.FixedSize, stake=10)

在TestStrategy(bt.Strategy) 类定义中,增加参数。

params = (
    ('exitbars', 5),
)

用于持仓天数,默认是5天。
修改后代码:

#6. 优化参数
# Create a Stratey
class TestStrategy(bt.Strategy):
    params = (
        ('exitbars', 5),
    )

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
        
        # To keep track of pending orders
        self.order = None                

        # To keep track of pending orders and buy price/commission
        self.order = None
        self.buyprice = None
        self.buycomm = None
        
        # 统计毛利和净利润
        self.gross = 0.0
        self.net = 0.0
        
    def notify_order(self, order):
        # 买卖订单的状态:提交和接受,通过broker控制    
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return

        # Check if an order has been completed
        # Attention: broker could reject order if not enough cash
        # broker如果资金不足将reject订单
        #订单状态是完成
        if order.status in [order.Completed]:
            #判断是买单,写日志
            if order.isbuy():
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                     order.executed.value,
                     order.executed.comm))
                
                self.buyprice = order.executed.price
                self.buycomm = order.executed.comm
                
           #判读是卖单,写日志
            elif order.issell():
                self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                         (order.executed.price,
                          order.executed.value,
                          order.executed.comm))

            #定义bar_executed 变量,记录处理bar的数量
            #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
            self.bar_executed = len(self)

            #日志显示处理的bar数量,逐渐递增。
            strlog = 'Bar executed :' + str(self.bar_executed)
            self.log(strlog)
            
        # 订单取消、保证金不足、退回
        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Order Canceled/Margin/Rejected')

        # Write down: no pending order
        # 处理完订单,无挂起订单,重置订单为空
        self.order = None

    def notify_trade(self, trade):
        # 如果不是平仓,返回
        if not trade.isclosed:
            return
        
        # 平仓计算成本和利润
        self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                 (trade.pnl, trade.pnlcomm))
        
        # 累计毛利和净利润
        self.gross += trade.pnl
        self.net =+ trade.pnlcomm
        
        self.log ('Accumulated profit,GROSS  %.2f, NET %.2f' % (self.gross,self.net))
        
    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])

        # Check if an order is pending ... if yes, we cannot send a 2nd one
        if self.order:
            return

        # Check if we are in the market
        if not self.position:

            # Not yet ... we MIGHT BUY if ...
            #连续两天下跌,开始买入
            if self.dataclose[0] < self.dataclose[-1]:
                    # current close less than previous close

                    if self.dataclose[-1] < self.dataclose[-2]:
                        # previous close less than the previous close

                        # BUY, BUY, BUY!!! (with default parameters)
                        self.log('BUY CREATE, %.2f' % self.dataclose[0])

                        # Keep track of the created order to avoid a 2nd order
                        self.order = self.buy()

        else:

            # Already in the market ... we might sell
            # 持仓5天
            if len(self) >= (self.bar_executed + self.params.exitbars):
                # SELL, SELL, SELL!!! (with all possible default parameters)
                self.log('SELL CREATE, %.2f' % self.dataclose[0])

                # Keep track of the created order to avoid a 2nd order
                self.order = self.sell()
                

if __name__ == '__main__':
    
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)

    stock_hfq_df = get_code('111969') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)
    
    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Set the commission - 0.1% ... divide by 100 to remove the %
    # 按万一的佣金 ,买卖操作都要扣除
    cerebro.broker.setcommission(commission=0.0001)
    
    # Add a FixedSize sizer according to the stake
    cerebro.addsizer(bt.sizers.FixedSize, stake=10)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

执行输出结果:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100403.51

由于每次购买10股,盈利增加。
日志:

2018-01-02, Close, 80.58
2018-01-03, Close, 80.90
2018-01-04, Close, 82.99
2018-01-05, Close, 82.68
2018-01-08, Close, 82.20
2018-01-08, BUY CREATE, 82.20
2018-01-09, BUY EXECUTED, Price: 82.40, Cost: 824.00, Comm 0.08
2018-01-09, Bar executed :6
2018-01-09, Close, 86.10
2018-01-10, Close, 88.90
2018-01-11, Close, 87.96
2018-01-12, Close, 91.37
2018-01-15, Close, 91.75
2018-01-16, Close, 90.82
2018-01-16, SELL CREATE, 90.82
2018-01-17, SELL EXECUTED, Price: 90.30, Cost: 824.00, Comm 0.09
2018-01-17, Bar executed :12
2018-01-17, OPERATION PROFIT, GROSS 79.00, NET 78.83
2018-01-17, Accumulated profit,GROSS  79.00, NET 78.83
2018-01-17, Close, 86.01

一次买卖,平仓后,净利润和毛利都增加。

(7)增加指示器indicator

上面的例子,买入是连跌三天,卖出是持仓5天。策略简单粗暴。
通过indicator的均线,做买入卖出指标,更加合理一点。

  • 如果收盘价高于平均值,则买入
  • 如果收盘价小于平均值,则卖出
  • 只允许1个交易活动操作,买一单,卖出一单的模式

修改内容:

  • 策略增加参数,SMA周期参数,默认设置30日 。
params = (         ('maperiod', 30),('exitbars', 5),    )
  • 在next方法中,调整买卖的判断。
#7. 使用指示器
# Create a Stratey
class TestStrategy(bt.Strategy):
    params = (
         ('maperiod', 30),('exitbars', 5),
    )

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
        
        # To keep track of pending orders
        self.order = None                

        # To keep track of pending orders and buy price/commission
        self.order = None
        self.buyprice = None
        self.buycomm = None
        
        # 统计毛利和净利润
        self.gross = 0.0
        self.net = 0.0
        
        # Add a MovingAverageSimple indicator
        # 使用简单移动平均线确定买入和卖出操作
        self.sma = bt.indicators.SimpleMovingAverage(
            self.datas[0], period=self.params.maperiod)
        
    def notify_order(self, order):
        # 买卖订单的状态:提交和接受,通过broker控制    
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return

        # Check if an order has been completed
        # Attention: broker could reject order if not enough cash
        # broker如果资金不足将reject订单
        #订单状态是完成
        if order.status in [order.Completed]:
            #判断是买单,写日志
            if order.isbuy():
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                     order.executed.value,
                     order.executed.comm))
                
                self.buyprice = order.executed.price
                self.buycomm = order.executed.comm
                
           #判读是卖单,写日志
            elif order.issell():
                self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                         (order.executed.price,
                          order.executed.value,
                          order.executed.comm))

            #定义bar_executed 变量,记录处理bar的数量
            #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
            self.bar_executed = len(self)

            #日志显示处理的bar数量,逐渐递增。
            strlog = 'Bar executed :' + str(self.bar_executed)
            self.log(strlog)
            
        # 订单取消、保证金不足、退回
        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Order Canceled/Margin/Rejected')

        # Write down: no pending order
        # 处理完订单,无挂起订单,重置订单为空
        self.order = None

    def notify_trade(self, trade):
        # 如果不是平仓,返回
        if not trade.isclosed:
            return
        
        # 平仓计算成本和利润
        self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                 (trade.pnl, trade.pnlcomm))
        
        # 累计毛利和净利润
        self.gross += trade.pnl
        self.net =+ trade.pnlcomm
        
        self.log ('Accumulated profit,GROSS  %.2f, NET %.2f' % (self.gross,self.net))
        
    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])

        # Check if an order is pending ... if yes, we cannot send a 2nd one
        if self.order:
            return

        # Check if we are in the market
        if not self.position:

            # Not yet ... we MIGHT BUY if ...
            #收盘穿过简单平均移动线,买入
            if self.dataclose[0] > self.sma[0]:
                # current close less than previous close

                if self.dataclose[-1] < self.dataclose[-2]:
                    # previous close less than the previous close

                    # BUY, BUY, BUY!!! (with default parameters)
                    self.log('BUY CREATE, %.2f' % self.dataclose[0])

                    # Keep track of the created order to avoid a 2nd order
                    self.order = self.buy()

        else:
            # Already in the market ... we might sell
            #收盘穿过简单平均移动线,买入
            if self.dataclose[0] < self.sma[0]:
                # SELL, SELL, SELL!!! (with all possible default parameters)
                self.log('SELL CREATE, %.2f' % self.dataclose[0])

                # Keep track of the created order to avoid a 2nd order
                self.order = self.sell()
                

if __name__ == '__main__':
    
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)

    stock_hfq_df = get_code('111969') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)
    
    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Set the commission - 0.1% ... divide by 100 to remove the %
    # 按万一的佣金 ,买卖操作都要扣除
    cerebro.broker.setcommission(commission=0.0001)
    
    # Add a FixedSize sizer according to the stake
    cerebro.addsizer(bt.sizers.FixedSize, stake=10)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

执行结果:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100522.68

比简单判断下跌买入,持仓5天卖出的策略,收益高119.17。

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100403.51
(8)可视化

内置的plot方法,参数如下:

def plot(self, plotter=None, numfigs=1, iplot=True, start=None, end=None,
        width=16, height=9, dpi=300, tight=True, use=None, **kwargs):

说明:如果在jupyter中直接绘图,报错

cerebro.plot() 

报错:Javascript Error: IPython is not defined
解决方法:
%matplotlib inline
调用绘图:

cerebro.plot(iplot=False)

在jupyter中可以绘图。

在init方法中增加绘图指示器指标:

        # Indicators for the plotting show
        bt.indicators.ExponentialMovingAverage(self.datas[0], period=25)
        bt.indicators.WeightedMovingAverage(self.datas[0], period=25,
                                            subplot=True)
        bt.indicators.StochasticSlow(self.datas[0])
        bt.indicators.MACDHisto(self.datas[0])
        rsi = bt.indicators.RSI(self.datas[0])
        bt.indicators.SmoothedMovingAverage(rsi, period=10)
        bt.indicators.ATR(self.datas[0], plot=False)
#8. 可视化
# Create a Stratey
class TestStrategy(bt.Strategy):
    params = (
         ('maperiod', 30),('exitbars', 5),
    )

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
        
        # To keep track of pending orders
        self.order = None                

        # To keep track of pending orders and buy price/commission
        self.order = None
        self.buyprice = None
        self.buycomm = None
        
        # 统计毛利和净利润
        self.gross = 0.0
        self.net = 0.0
        
        # Add a MovingAverageSimple indicator
        # 使用简单移动平均线确定买入和卖出操作
        self.sma = bt.indicators.SimpleMovingAverage(
            self.datas[0], period=self.params.maperiod)
        
        # Indicators for the plotting show
        bt.indicators.ExponentialMovingAverage(self.datas[0], period=25)
        bt.indicators.WeightedMovingAverage(self.datas[0], period=25,
                                            subplot=True)
        bt.indicators.StochasticSlow(self.datas[0])
        bt.indicators.MACDHisto(self.datas[0])
        rsi = bt.indicators.RSI(self.datas[0])
        bt.indicators.SmoothedMovingAverage(rsi, period=10)
        bt.indicators.ATR(self.datas[0], plot=False)
        
    def notify_order(self, order):
        # 买卖订单的状态:提交和接受,通过broker控制    
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return

        # Check if an order has been completed
        # Attention: broker could reject order if not enough cash
        # broker如果资金不足将reject订单
        #订单状态是完成
        if order.status in [order.Completed]:
            #判断是买单,写日志
            if order.isbuy():
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                     order.executed.value,
                     order.executed.comm))
                
                self.buyprice = order.executed.price
                self.buycomm = order.executed.comm
                
           #判读是卖单,写日志
            elif order.issell():
                self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                         (order.executed.price,
                          order.executed.value,
                          order.executed.comm))

            #定义bar_executed 变量,记录处理bar的数量
            #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
            self.bar_executed = len(self)

            #日志显示处理的bar数量,逐渐递增。
            strlog = 'Bar executed :' + str(self.bar_executed)
            self.log(strlog)
            
        # 订单取消、保证金不足、退回
        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Order Canceled/Margin/Rejected')

        # Write down: no pending order
        # 处理完订单,无挂起订单,重置订单为空
        self.order = None

    def notify_trade(self, trade):
        # 如果不是平仓,返回
        if not trade.isclosed:
            return
        
        # 平仓计算成本和利润
        self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                 (trade.pnl, trade.pnlcomm))
        
        # 累计毛利和净利润
        self.gross += trade.pnl
        self.net =+ trade.pnlcomm
        
        self.log ('Accumulated profit,GROSS  %.2f, NET %.2f' % (self.gross,self.net))
        
    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])

        # Check if an order is pending ... if yes, we cannot send a 2nd one
        if self.order:
            return

        # Check if we are in the market
        if not self.position:

            # Not yet ... we MIGHT BUY if ...
            #收盘穿过简单平均移动线,买入
            if self.dataclose[0] > self.sma[0]:
                # current close less than previous close

                if self.dataclose[-1] < self.dataclose[-2]:
                    # previous close less than the previous close

                    # BUY, BUY, BUY!!! (with default parameters)
                    self.log('BUY CREATE, %.2f' % self.dataclose[0])

                    # Keep track of the created order to avoid a 2nd order
                    self.order = self.buy()

        else:
            # Already in the market ... we might sell
            #收盘穿过简单平均移动线,买入
            if self.dataclose[0] < self.sma[0]:
                # SELL, SELL, SELL!!! (with all possible default parameters)
                self.log('SELL CREATE, %.2f' % self.dataclose[0])

                # Keep track of the created order to avoid a 2nd order
                self.order = self.sell()

                
%matplotlib inline
if __name__ == '__main__':
    
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)

    stock_hfq_df = get_code('111969') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)
    
    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Set the commission - 0.1% ... divide by 100 to remove the %
    # 按万一的佣金 ,买卖操作都要扣除
    cerebro.broker.setcommission(commission=0.0001)
    
    # Add a FixedSize sizer according to the stake
    cerebro.addsizer(bt.sizers.FixedSize, stake=10)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
    
    cerebro.plot(iplot=False)
    #cerebro.plot() # Javascript Error: IPython is not defined

绘图结果如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1312857.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Qt QML入门】Button

Button表示一个推按钮控件&#xff0c;用户可以按下或单击它。 import QtQuick import QtQuick.Window import QtQuick.ControlsWindow {id: winwidth: 800height: 600visible: truetitle: qsTr("Hello World")Button {id: btnwidth: 200height: 100anchors.centerIn…

Spring+SpringMVC+SpringBoot

Spring bean bean基础配置 bean别名配置 注意事项&#xff1a; 获取bean无论是通过id还是name获取。如果无法获取到&#xff0c;将抛出异常NoSuchBeanDefinitionException bean的作用范围配置 适合交给容器进行管理的bean 表现层对象、业务层对象、数据层对象、工具对象 不…

【数学知识】LCP42: 玩具套圈

作者推荐 【动态规划】【广度优先搜索】LeetCode:2617 网格图中最少访问的格子数 本文涉及的基础知识点 优化后&#xff0c;就不需要二分了。 二分查找算法合集 题目 「力扣挑战赛」场地外&#xff0c;小力组织了一个套玩具的游戏。所有的玩具摆在平地上&#xff0c;toys…

开源BI 平台AJ-Report —— 筑梦之路

AJ-Report: AJ-Report是一个完全开源&#xff0c;拖拽编辑的可视化设计工具。三步快速完成大屏&#xff1a;配置数据源---->写SQL配置数据集---->拖拽生成大屏。让管理层随时随地掌控业务动态&#xff0c;让每个决策都有数据支撑。

[渗透测试学习] Sau - HackTheBox

首先是信息搜集&#xff0c;nmap扫一下 nmap -sV -sC -p- -v 10.10.11.224 发现存在两个端口&#xff0c;55555端口有http服务&#xff0c;访问一下 获得线索request-baskets版本为1.2.1&#xff0c;搜索发现存在漏洞 那么我们试试构造ssrf&#xff0c;create的时候bp抓包 构…

【教程】源代码加密、防泄密软件

​ 什么是代码混淆&#xff1f; 代码混淆 是一种将应用程序二进制文件转换为功能上等价&#xff0c;但人类难于阅读和理解的行为。在编译 Dart 代码时&#xff0c;混淆会隐藏函数和类的名称&#xff0c;并用其他符号替代每个符号&#xff0c;从而使攻击者难以进行逆向工程。 …

PyQt6 QFrame分割线控件

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计46条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

Vue3-20-组件-父组件给子组件传值

情景说明 当父组件使用子组件的时候&#xff0c; 我们可能会需要将某些父组件的变量值 传递 给 子组件&#xff0c;在子组件中进行使用。此时就有一个 【父组件】传值给【子组件】的动作。 这就是本文我们要讨论的问题。主要问题有两个 &#xff1a; 1、【子组件】 如何接收值…

Zoho Desk与Zendesk详细对比:热门在线客服系统之争

企业需要一款功能强大且丰富的客服系统产品为其解决客户服务的难题。对于了解过Zendesk的企业来讲&#xff0c;可能会考虑到还有哪些产品可供选择&#xff0c;便于对比选择出更合适的产品。这篇文章就为大家展现了一款和Zendesk功能相似的产品——Zoho Desk&#xff0c;在功能、…

辅助电源交流220V转5V200mA输出,不需要变压器

辅助电源交流220V转5V200mA输出&#xff0c;不需要变压器。 在当今智能家居、小家电等电子产品日益普及的时代&#xff0c;对辅助电源的需求也越来越大。一款高效、低成本、小巧封装的辅助电源芯片成为众多产品的迫切需求。今天&#xff0c;我们将为您介绍一款交流220V转5V200m…

CDN初学习

目录 1、CDN是什么 2、CDN管理中心 3、CDN 的工作原理 4、如何保证CDN的内容缓存和分发的可靠性&#xff1f; 5、cdn的应用场景 6、使用CDN服务时&#xff0c;需要注意哪些问题&#xff1f; 1、CDN是什么 CDN是Content Delivery Network的缩写&#xff0c;也被称为内容分…

接口测试 — 4.Requests库GET、Post请求

Requests库GET请求是使用HTTP协议中的GET请求方式对目标网站发起请求。 &#xff08;不带参数的GET请求请看上一篇文章的练习&#xff09; 1、Requests库待参数的GET请求 使用Get方法带参数请求时&#xff0c;是params参数字典&#xff0c;而不是data参数字典。data参数字典…

【Pytorch】Transposed Convolution

文章目录 1 卷积2 反/逆卷积3 MaxUnpool / ConvTranspose4 encoder-decoder5 可视化 学习参考来自&#xff1a; 详解逆卷积操作–Up-sampling with Transposed Convolution PyTorch使用记录 https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_co…

DDD、SOA、微服务和微内核

DDD、SOA、微服务和微内核&#xff0c;看到经常有人把这几个概念拿出来一起讲。事实上&#xff0c;DDD和其他三个不是一个维度的东西。 DDD其实特别好理解&#xff0c;DDD就是领域来驱动设计嘛&#xff0c;是一种设计思想。很容易又和OOA、OOD和OOP来比较了。这个回头再说。 SO…

世微 AP9166 DC-DC降压IC 18V 2A同步降压转换器

600KHz&#xff0c;18V&#xff0c;2A同步降压转换器 概述 AP9166是一款完全集成的效率2A同步整流降压转换器。AP9166运行在宽输出电流上以高效率 负载范围。此设备提供两个操作模式、PWM控制和PFM模式切换控制&#xff0c;允许更宽范围的高效率 负载AP9166至少需要现成标准的…

JVM的内存分区以及垃圾收集

1.JVM的内存分区 1.1方法区 方法区(永久代&#xff09;主要用来存储已在虚拟机加载的类的信息、常量、静态变量以及即时编译器编译后的代码信息。该区域是被线程共享的。 1.2虚拟机栈 虚拟机栈也就是我们平时说的栈内存&#xff0c;它是为java方法服务的。每个方法在执行的…

mysql踩坑

关于安装 1报错&#xff1a;ER_NOT_SUPPORTED_AUTH_MODE: Client does not support authentication protocol requested by server; consider upgrading MySQL client具体代码如下&#xff1a; import mysql from "mysql"//连接数据库 const dbmysql.createPool({h…

计算机视觉技术在智慧城市建设中的应用

计算机视觉技术在智慧城市建设中的应用 随着城市化进程的不断推进&#xff0c;更多的人们选择在城市生活、工作和娱乐。面对快速增长的人口和日益复杂的城市环境&#xff0c;很多城市开始探索智慧城市的建设。智慧城市的核心就是将现代信息技术应用于城市管理中&#xff0c;以…

gitlab下载,离线安装

目录 1.下载 2.安装 3.配置 4.启动 5.登录 参考&#xff1a; 1.下载 根据服务器操作系统版本&#xff0c;下载对应的RPM包。 gitlab官网&#xff1a; The DevSecOps Platform | GitLab rpm包官网下载地址: gitlab/gitlab-ce - Results in gitlab/gitlab-ce 国内镜像地…

阿里云人工智能平台PAI多篇论文入选EMNLP 2023

近期&#xff0c;阿里云人工智能平台PAI主导的多篇论文在EMNLP2023上入选。EMNLP是人工智能自然语言处理领域的顶级国际会议&#xff0c;聚焦于自然语言处理技术在各个应用场景的学术研究&#xff0c;尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、…