智能优化算法应用:基于郊狼算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/29 8:50:08

智能优化算法应用:基于郊狼算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于郊狼算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.郊狼算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用郊狼算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.郊狼算法

郊狼算法原理请参考:https://blog.csdn.net/u011835903/article/details/107813319
郊狼算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


郊狼算法参数如下:

%% 设定郊狼优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明郊狼算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1299994.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

思科最新版Cisco Packet Tracer 8.2.1安装

思科最新版Cisco Packet Tracer 8.2.1安装 一. 注册并登录CISCO账号二. 下载 Cisco Packet Tracer 8.2.1三. 安装四. 汉化五. cisco packet tracer教学文档六. 正常使用图 前言 这是我在这个网站整理的笔记,有错误的地方请指出,关注我,接下来还会持续更新…

【数据结构第 6 章 ③】- 用 C 语言实现邻接表并简单介绍十字链表和邻接多重表

目录 一、邻接表 1.1 - ALGraph.h 1.2 - ALGraph.c 1.3 - Test.c 二、十字链表 三、邻接多重表 一、邻接表 邻接表(Adjacency List)是图的一种链式存储结构。在邻接表中,对图中每个顶点建立一个单链表,第 i 个单链表中的结…

使用ssm框架进行mapper或者service单纯测试时报错问题处理

问题 使用注解方式配置好ssm后,无法在测试中单独测试mapper层和service层。效果如下: 解决 关闭配置类中的EnableWebMvc 再次运行,即可完成测试。

【WPF 按钮点击后异步上传多文件code示例】

前言: WPF中按钮点击事件如何执行时间太长会导致整个UI线程卡顿,现象就是页面刷新卡住,点击其他按钮无反馈。如下是进行异步执行命令,并远程上传文件的代码。 ![异步上传文件](https://img-blog.csdnimg.cn/direct/20c071929b004dcf9223dee2…

postgresql安装部署(docker版本)

1.在线部署 创建数据库存储目录 mkdir /home/pgdata创建容器 docker run --name postgresql --restartalways -d -p 5432:5432 -v /home/pgdata:/var/lib/postgresql/data --shm-size10g -e POSTGRES_PASSWORD密码 postgis/postgis:12-3.2-alpine–name为设置容器名称 -d表…

第 375 场 LeetCode 周赛题解

A 统计已测试设备 模拟&#xff1a;记录当前已测试设备数量 class Solution { public:int countTestedDevices(vector<int> &batteryPercentages) {int res 0;int s 0;for (auto x: batteryPercentages) {if (x - s > 0) {res;s;}}return res;} };B 双模幂运算 …

NR Channel raster和Sync raster

NR中&#xff0c;由于信道带宽可能非常大&#xff0c;如果UE按照channel Raster进行同步信号搜索&#xff0c;需要的时间很长&#xff0c;且非常耗电&#xff1b;因而NR引入了Synchronization raster的概念&#xff0c;同步信号按照Sync Raster放置。 ARFCN 频点号对应Channel…

java--DateTimeFormatter、Period、Duration

1.DateTimeFormatter 2.LocalDateTime提供的格式化、解析时间的方法 3.Period(一段时期) 可以用于计算两个LocalDate对象相差的年数、月数、天数。 4.Duration(持续时间) 可以用于计算两个时间对象相差的天数、小时数、分数、秒数、纳秒数&#xff1b;支持LocalTime、LocalDa…

【Spring】依赖注入之属性注入详解

前言&#xff1a; 我们在进行web开发时&#xff0c;基本上一个接口对应一个实现类&#xff0c;比如IOrderService接口对应一个OrderServiceImpl实现类&#xff0c;给OrderServiceImpl标注Service注解后&#xff0c;Spring在启动时就会将其注册成bean进行统一管理。在Co…

【小沐学Python】Python实现WebUI网页图表(gradio)

文章目录 1、简介2、安装3、基本测试3.1 入门代码3.2 组件属性3.3 多个输入和输出组件3.4 图像示例3.5 聊天机器人3.6 模块&#xff1a;更灵活、更可控3.7 进度条 结语 1、简介 https://www.gradio.app/ Gradio是用友好的网络界面演示机器学习模型的最快方法&#xff0c;因此…

C# WPF上位机开发(动态库dll的开发)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 很多时候&#xff0c;我们并不希望所有的程序都放到一个exe里面。因为这样相当于把所有的风险都放在了一个文件里里面&#xff0c;既不利于程序的升…

漏洞复现-大华dss struts2-045表达式注入漏洞(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…

Lambda表达式规则,用法

Lambda表达式是JDK8新增的一种语法格式 1.作用 简化匿名内部类的代码写法 Lambad用法前提&#xff1a;只能简化函数式接口&#xff08;一般加有Funcationallnterface&#xff09;&#xff08;有且仅有一个抽象方法&#xff09;的匿名内部类 匿名内部类&#xff1a;(本质是对…

用23种设计模式打造一个cocos creator的游戏框架----(十二)状态模式

1、模式标准 模式名称&#xff1a;状态模式 模式分类&#xff1a;行为型 模式意图&#xff1a;允许一个对象在其内部状态改变时改变它的行为。对象看起来似乎修改了它的类。 结构图&#xff1a; 适用于&#xff1a; 1、一个对象的行为决定于它的状态&#xff0c;并且它必须…

Leetcode—219.存在重复元素II【简单】

2023每日刷题&#xff08;五十三&#xff09; Leetcode—219.存在重复元素II 实现代码 class Solution { public:bool containsNearbyDuplicate(vector<int>& nums, int k) {unordered_map<int, int> m;int n nums.size();for(int i 0; i < n; i) {if(m…

Hexo部署到云服务器后CSS样式无效的问题

Hexo部署到云服务器后CSS样式无效的问题 01 前言 趁活动入手了一个云服务器&#xff08;Linux&#xff09;&#xff0c;打算简单挂个博客上去&#xff0c;因为之前部署到github有了一些经验&#xff0c;所以还是选择使用Hexo。中间步骤略&#xff0c;部署完使用浏览器访问的时…

计算机基础知识66

Auth的补充 #概念&#xff1a;是django 的一个app&#xff0c;关于用户的登录&#xff0c;退出&#xff0c;注册... # 配置文件中配置&#xff1a;表会被迁移 INSTALLED_APPS [django.contrib.auth,] # auth有哪些表---权限控制&#xff1a; Permission&#xff1a;auth_permi…

m.2固态硬盘怎么选择?

一、什么是固态硬盘 固态硬盘又称SSD&#xff0c;是Solid State Drive的简称&#xff0c;由于采用了闪存技术&#xff0c;其处理速度远远超过传统的机械硬盘&#xff0c;这主要是因为固态硬盘的数据以电子的方式存储在闪存芯片中&#xff0c;不需要像机械硬盘那样通过磁头读写磁…

智能制造和低代码:打造高效工厂的关键

引言 随着全球制造业进入数字化时代&#xff0c;智能制造和低代码技术已经成为实现高效工厂运营的关键。这两个关键因素的融合为制造业带来了巨大的机会&#xff0c;使企业能够更灵活地应对市场需求、提高生产效率和降低成本。本文将深入探讨智能制造和低代码技术如何共同塑造…

Java到底是什么?学了我们能做什么?

一、Java是什么&#xff1f; Java是一门面向对象编程语言&#xff0c;不仅吸收了C语言的各种优点&#xff0c;还摒弃了C里难以理解的多继承、指针等概念&#xff0c;因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表&#xff0c;极好地实…