大创项目推荐 交通目标检测-行人车辆检测流量计数 - 大创项目推荐

news2024/11/26 4:39:45

文章目录

  • 0 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 交通目标检测-行人车辆检测流量计数

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian
Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧中所有的行人,包括位置和大小,一般用矩形框表示,和人脸检测类似,这也是典型的目标检测问题。

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程


    import cv2
    import numpy as np
    import random


    def load_images(dirname, amout = 9999):
        img_list = []
        file = open(dirname)
        img_name = file.readline()
        while img_name != '':  # 文件尾
            img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')
            img_list.append(cv2.imread(img_name))
            img_name = file.readline()
            amout -= 1
            if amout <= 0: # 控制读取图片的数量
                break
        return img_list



    # 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本
    def sample_neg(full_neg_lst, neg_list, size):
        random.seed(1)
        width, height = size[1], size[0]
        for i in range(len(full_neg_lst)):
            for j in range(10):
                y = int(random.random() * (len(full_neg_lst[i]) - height))
                x = int(random.random() * (len(full_neg_lst[i][0]) - width))
                neg_list.append(full_neg_lst[i][y:y + height, x:x + width])
        return neg_list


    # wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsize
    def computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):
        hog = cv2.HOGDescriptor()
        # hog.winSize = wsize
        for i in range(len(img_lst)):
            if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:
                roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \
                      (img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]
                gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
                gradient_lst.append(hog.compute(gray))
        # return gradient_lst



    def get_svm_detector(svm):
        sv = svm.getSupportVectors()
        rho, _, _ = svm.getDecisionFunction(0)
        sv = np.transpose(sv)
        return np.append(sv, [[-rho]], 0)



    # 主程序
    # 第一步:计算HOG特征
    neg_list = []
    pos_list = []
    gradient_lst = []
    labels = []
    hard_neg_list = []
    svm = cv2.ml.SVM_create()
    pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')
    full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')
    sample_neg(full_neg_lst, neg_list, [128, 64])
    print(len(neg_list))
    computeHOGs(pos_list, gradient_lst)
    [labels.append(+1) for _ in range(len(pos_list))]
    computeHOGs(neg_list, gradient_lst)
    [labels.append(-1) for _ in range(len(neg_list))]
     
    # 第二步:训练SVM
    svm.setCoef0(0)
    svm.setCoef0(0.0)
    svm.setDegree(3)
    criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)
    svm.setTermCriteria(criteria)
    svm.setGamma(0)
    svm.setKernel(cv2.ml.SVM_LINEAR)
    svm.setNu(0.5)
    svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?
    svm.setC(0.01)  # From paper, soft classifier
    svm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression task
    svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))
     
    # 第三步:加入识别错误的样本,进行第二轮训练
    # 参考 http://masikkk.com/article/SVM-HOG-HardExample/
    hog = cv2.HOGDescriptor()
    hard_neg_list.clear()
    hog.setSVMDetector(get_svm_detector(svm))
    for i in range(len(full_neg_lst)):
        rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)
        for (x,y,w,h) in rects:
            hardExample = full_neg_lst[i][y:y+h, x:x+w]
            hard_neg_list.append(cv2.resize(hardExample,(64,128)))
    computeHOGs(hard_neg_list, gradient_lst)
    [labels.append(-1) for _ in range(len(hard_neg_list))]
    svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))



    # 第四步:保存训练结果
    hog.setSVMDetector(get_svm_detector(svm))
    hog.save('myHogDector.bin')


最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1296574.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Day54力扣打卡

打卡记录 出租车的最大盈利&#xff08;动态规划&#xff09; 链接 class Solution:def maxTaxiEarnings(self, n: int, rides: List[List[int]]) -> int:d defaultdict(list)for start, end, w in rides:d[end].append((start, end - start w))f [0] * (n 1)for i in…

Spring Boot整合 Spring Security

Spring Boot整合 1、RBAC 权限模型 RBAC模型&#xff08;Role-Based Access Control&#xff1a;基于角色的访问控制&#xff09; 在RBAC模型里面&#xff0c;有3个基础组成部分&#xff0c;分别是&#xff1a;用户、角色和权限&#xff0c;它们之间的关系如下图所示 SELECT…

案例061:基于微信小程序的互助学习系统

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

销售技巧培训之如何提高手机销售技巧

销售技巧培训之如何提高手机销售技巧 随着科技的迅速发展&#xff0c;手机已成为我们日常生活中不可或缺的一部分。作为一名手机销售员&#xff0c;了解手机销售技巧是必不可少的。本文将通过案例分析与实践&#xff0c;为你揭示手机销售的奥秘。 一、了解客户需求 在销售过程…

IDEA 出现问题:Idea-操作多次commit,如何合并为一个并push解决方案

❤️作者主页&#xff1a;小虚竹 ❤️作者简介&#xff1a;大家好,我是小虚竹。2022年度博客之星评选TOP 10&#x1f3c6;&#xff0c;Java领域优质创作者&#x1f3c6;&#xff0c;CSDN博客专家&#x1f3c6;&#xff0c;华为云享专家&#x1f3c6;&#xff0c;掘金年度人气作…

【软件安装】VMware安装Centos7虚拟机并且设置静态IP,实现Windows和Centos7网络互相访问

这篇文章&#xff0c;主要介绍VMware安装Centos7虚拟机并且设置静态IP&#xff0c;实现Windows和Centos7网络互相访问。 目录 一、VMware安装Centos7 1.1、下载Centos7镜像 1.2、安装Centos7系统 二、设置静态IP地址 2.1、查看虚拟机网络IP 2.2、禁用NetworkManager服务 …

Elastic Support Hub 转向语义搜索

作者&#xff1a;Chris Blaisure 我们很高兴与大家分享 Elastic Support Hub 最近的增强功能&#xff1a;它现在由语义搜索提供支持&#xff01; 但在我们更详细地了解对 Elastic Support Hub 所做的更改及其对客户的影响之前&#xff0c;我们需要花点时间解释语义搜索的概念&…

Amazon CodeWhisperer 开箱初体验

文章作者&#xff1a;Coder9527 科技的进步日新月异&#xff0c;正当人工智能发展如火如荼的时候&#xff0c;各大厂商在“解放”码农的道路上不断创造出各种 Coding 利器&#xff0c;今天在下就带大家开箱体验一个 Coding 利器&#xff1a; Amazon CodeWhisperer。 亚马逊云科…

【HTML】解析垂直滚动轮播效果的HTML、CSS和JavaScript实现

解析垂直滚动轮播效果的HTML、CSS和JavaScript实现 在现代Web开发中&#xff0c;滚动轮播效果是网页设计中常见的交互元素之一。在本文中&#xff0c;我们将深入解析一段HTML、CSS和JavaScript的代码&#xff0c;实现了一个简单而高效的垂直滚动轮播效果。通过该代码&#xff…

自动化使用GradCAM处理图片(用于ViT和swin的变体)附链接

GradCAM_On_ViT 用于可视化模型结果的 GradCAM 自动脚本 如何在 GradCam 中调整 XXXFormer 请确保您的模型格式正确。 如果您应用的变压器是类似 swin&#xff08;无ClassToken&#xff09;或类似 ViT &#xff08;有ClassToken&#xff09; 张量的形状可能看起来像[Batc…

linux Ubuntu下,第一个C++程序访问数据库,遇到的问题,及解决办法

在ubuntu下安装了mysql&#xff0c;mysql以后&#xff0c;编写了第一个访问数据库的程序&#xff1a; #include <iostream> #include <string> #include <cstdlib> //for system #include <mysql.h>using namespace std;int main() {mysqlpp::Connect…

webSRc实现浏览器播放rtsp【海康】

先上代码 <template><div>video的配置自己写<video id"video" autoplay width"900" height"900"></video></div> </template><script> export default {name: index1,data() {return {webRtcServer: …

关于IDEA中maven的作用以及如何配置MAVEN

关于IDEA中maven的作用以及如何配置MAVEN 1、Maven是什么2、Idea中对于Maven的配置3、下载依赖时&#xff0c;Idea下方的显示3.1、Maven中央仓库的下载显示界面3.2、阿里云仓库的下载显示界面 4、Maven在Idea中的使用4.1、clean4.2、validate4.3、compile4.4、test&#xff08;…

go语言 grpc 拦截器

文章目录 拦截器服务端拦截器一元拦截器流拦截器 客户端拦截器一元拦截器流拦截 多个拦截器 代码仓库 拦截器 gRPC拦截器&#xff08;interceptor&#xff09;是一种函数&#xff0c;它可以在gRPC调用之前和之后执行一些逻辑&#xff0c;例如认证、授权、日志记录、监控和统计…

目标检测——OverFeat算法解读

论文&#xff1a;OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 作者&#xff1a;Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun 链接&#xff1a;https://arxiv.org/abs/1312.6229 文章…

actitivi自定义属性(二)

声明&#xff1a;此处activiti版本为6.0 此文章介绍后端自定义属性解析&#xff0c;前端添加自定义属性方法连接&#xff1a;activiti自定义属性&#xff08;一&#xff09;_ruoyi activiti自定义标题-CSDN博客 1、涉及到的类如下&#xff1a; 简介&#xff1a;DefaultXmlPar…

2023年江西省“振兴杯”网络信息行业(信息安全测试员)职业技能竞赛 Write UP

文章目录 一、2023csy-web1二、2023csy-web2三、2023csy-web3四、2023csy-web4五、2023csy-misc1六、2023csy-misc2七、2023csy-crypto1八、2023csy-re1 一、2023csy-web1 该题提供一个web靶场&#xff0c;《伟大的挑战者》&#xff0c;分值&#xff1a;5分 web页面一直在播放c…

nodejs+vue+微信小程序+python+PHP的智能停车系统-计算机毕业设计推荐django

随着网络技术的不断发展&#xff0c;多媒体技术应用渐渐的出现在教育领域中&#xff0c;智能停车算法研究管理已经成为社会的一个热门话题。互联网应用在全球范围内日益普及&#xff0c;在许多的网络服务中&#xff0c;Web给人耳目一新的感觉。在这其中&#xff0c;网络平台开展…

unity 2d 入门 飞翔小鸟 小鸟碰撞 及死亡(九)

1、给地面&#xff0c;柱体这种添加2d盒装碰撞器&#xff0c;小鸟移动碰到就不会动了 2、修改小鸟的脚本&#xff08;脚本命名不规范&#xff0c;不要在意&#xff09; using System.Collections; using System.Collections.Generic; using UnityEngine;public class Fly : Mo…

【hugging face】bitsandbytes中8 bit量化的理解

8 位量化使数十亿参数规模的模型能够适应更小的硬件&#xff0c;而不会降低性能。 8 位量化的工作原理如下&#xff1a; 1.从输入隐藏状态中按列提取较大值&#xff08;离群值&#xff09;。 2.对 FP16 中的离群值和 int8 中的非离群值执行矩阵乘法。 3.改变非异常值结果以将值…