软著项目推荐 深度学习实现语义分割算法系统 - 机器视觉

news2024/11/24 13:41:24

文章目录

  • 1 前言
  • 2 概念介绍
    • 2.1 什么是图像语义分割
  • 3 条件随机场的深度学习模型
    • 3\. 1 多尺度特征融合
  • 4 语义分割开发过程
    • 4.1 建立
    • 4.2 下载CamVid数据集
    • 4.3 加载CamVid图像
    • 4.4 加载CamVid像素标签图像
  • 5 PyTorch 实现语义分割
    • 5.1 数据集准备
    • 5.2 训练基准模型
    • 5.3 损失函数
    • 5.4 归一化层
    • 5.5 数据增强
    • 5.6 实现效果
  • 6 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习实现语义分割算法系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 概念介绍

2.1 什么是图像语义分割

这几年,随着深度学习理论和大规模并行计算设备快速发展,计算机视觉的诸多难点实现了质的突破,包括图像分类叫、目标检测、语义分割等等。

其中图像分类和目标检测在各种场景应用中大放光彩。目前最先进网络的准确度已经超过人类。

而图像语义分割是一.种语义信息更丰富的视觉识别任务,其主要任务是实现像素级别的分类。

图像语义分割示意图如下图所示。

图像语义分割技术在实际中有着非常广泛的应用,如自动驾驶、生物医学以及现实增强技术等等。

在这里插入图片描述

语义分割在自动驾驶的应用:

在这里插入图片描述
在这里插入图片描述

3 条件随机场的深度学习模型

整个深度学习模型框架下如图:
在这里插入图片描述

3. 1 多尺度特征融合

图像中的各类物体都以不同的形态出现, 用来观测它们的尺度也不尽相同, 不同的物体需要用合适的尺度来测量。

尺度也有很多种, 宏观上大的如“米”、“千米” 甚至“光年”; 微观上小的如“微米”、“纳米” 甚至是“飞米”。 在日常生活中,
人们也经常接触到尺度上的变换, 例如人们经常用到的电子地图上的放大与缩小、 照相机焦距的变化等,都是以不同的尺度来观察或者测量不同的物体。

当人们将一幅图像输入到计算机中时, 计算机要尝试很多不同的尺度以便得到描述图片中不同物体的最合适的尺度。

卷积神经网络中含有大量的超参数, 而且在网络中的任何一个参数, 都会对网络生成的特征映射产生影响。 当卷积神经网络的结构已经确定下来时,
网络中每一层学习到的特征映射的尺度也随之固定了下来, 拥有了在一定程度上的尺度不变性。

与此同时, 为了完成当前的任务, 网络中的这些已经设置好的超参数不能被随意更改, 所以必须要考虑融合多尺度特征的神经网络。

这种神经网络可以学习学长提供的框架不同尺度的图像特征, 获得不同尺度的预测, 进而将它们融合, 获得最后的输出。

一种多尺度特征融合网络如下所示。

在这里插入图片描述

4 语义分割开发过程

学长在这详细说明图像语义分割,如何进行开发和设计

语义分割网络对图像中的每个像素进行分类,从而产生按类别分割的图像。语义分割的应用包括用于自主驾驶的道路分割和用于医学诊断的癌细胞分割。有关详细信息,请参阅语义分段基础知识(计算机视觉系统工具箱)。

为了说明训练过程,学长训练SegNet ,一种设计用于语义图像分割的卷积神经网络(CNN)。用于语义分段的其他类型网络包括完全卷积网络(FCN)和U-
Net。此处显示的培训程序也可以应用于这些网络。

此示例使用剑桥大学的CamVid数据集进行培训。此数据集是包含驾驶时获得的街道视图的图像集合。该数据集为32种语义类提供了像素级标签,包括汽车,行人和道路。

4.1 建立

此示例创建具有从VGG-16网络初始化的权重的SegNet网络。要获得VGG-16,请安装适用于VGG-16网络的Deep Learning
Toolbox™模型。安装完成后,运行以下代码以验证安装是否正确。

vgg16();
下载预训练版的SegNet。预训练模型允许您运行整个示例,而无需等待培训完成。

pretrainedURL = 'https: //www.mathworks.com/supportfiles/vision/data/segnetVGG16CamVid.mat ' ;
pretrainedFolder = fullfile(tempdir,'pretrainedSegNet';
pretrainedSegNet = fullfile(pretrainedFolder,'segnetVGG16CamVid.mat'; 
如果〜存在(pretrainedFolder,'dir')
    MKDIR(pretrainedFolder);
    disp('下载预训练的SegNet(107 MB)......';
    websave(pretrainedSegNet,pretrainedURL);
结束

强烈建议使用具有计算能力3.0或更高版本的支持CUDA的NVIDIA™GPU来运行此示例。使用GPU需要Parallel Computing
Toolbox™。

4.2 下载CamVid数据集

从以下URL下载CamVid数据集。

imageURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip;  
labelURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip;

outputFolder = fullfile(tempdir,‘CamVid’);

如果〜存在(outputFolder,‘dir’)

MKDIR(outputFolder)
labelsZip = fullfile(outputFolder,'labels.zip';
imagesZip = fullfile(outputFolder,'images.zip';   

disp('下载16 MB CamVid数据集标签......';
websave(labelsZip,labelURL);
unzip(labelsZip,fullfile(outputFolder,'labels'));

disp('下载557 MB CamVid数据集图像......';  
websave(imagesZip,imageURL);       
解压缩(imagesZip,fullfile(outputFolder,'images'));    


注意:数据的下载时间取决于您的Internet连接。上面使用的命令会阻止MATLAB,直到下载完成。或者,您可以使用Web浏览器首先将数据集下载到本地磁盘。要使用从Web下载的文件,请将outputFolder上面的变量更改为下载文件的位置。

4.3 加载CamVid图像

使用imageDatastore加载CamVid图像。在imageDatastore使您能够高效地装载大量收集图像的磁盘上。

imgDir = fullfile(outputFolder,'images''701_StillsRaw_full';
imds = imageDatastore(imgDir);
显示其中一个图像。

在这里插入图片描述

4.4 加载CamVid像素标签图像

使用pixelLabelDatastore加载CamVid像素标签图像数据。A
pixelLabelDatastore将像素标签数据和标签ID封装到类名映射中。

按照原始SegNet论文[1]中使用的程序,将CamVid中的32个原始类分组为11个类。指定这些类。

class = [
     “Sky” 
    “Building” 
    “Pole” 
    “Road” 
    “Pavement” 
    “Tree” 
    “SignSymbol” 
    “Fence” 
    “Car” 
    “Pedestrian” 
    “Bicyclist” 
    ];

要将32个类减少为11个,将原始数据集中的多个类组合在一起。例如,“Car”是“Car”,“SUVPickupTruck”,“Truck_Bus”,“Train”和“OtherMoving”的组合。使用支持函数返回分组的标签ID,该函数camvidPixelLabelIDs在本示例的末尾列出。

abelIDs = camvidPixelLabelIDs();
使用类和标签ID来创建 pixelLabelDatastore.

labelDir = fullfile(outputFolder,'labels';
pxds = pixelLabelDatastore(labelDir,classes,labelIDs);
通过将其叠加在图像上来读取并显示其中一个像素标记的图像。

C = readimage(pxds,1;

cmap = camvidColorMap;

B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
pixelLabelColorbar(CMAP,班);

在这里插入图片描述

5 PyTorch 实现语义分割

学长这里给出一个具体实例 :

使用2020年ECCV Vipriors Chalange Start Code实现语义分割,并且做了一些优化,让进度更高

5.1 数据集准备

使用Cityscapes的数据集MiniCity Dataset。

在这里插入图片描述

将各基准类别进行输入:

在这里插入图片描述

从0-18计数,对各类别进行像素标记:

在这里插入图片描述

使用deeplab v3进行基线测试,结果发现次要类别的IoU特别低,这样会导致难以跟背景进行区分。

如下图中所示的墙、栅栏、公共汽车、火车等。

在这里插入图片描述

注意: 以上的结果表述数据集存在严重的类别不平衡问题。

5.2 训练基准模型

使用来自torchvision的DeepLabV3进行训练。

硬件为4个RTX 2080 Ti GPU (11GB x 4),如果只有1个GPU或较小的GPU内存,请使用较小的批处理大小(< = 8)。

python baseline.py --save_path baseline_run_deeplabv3_resnet50 --crop_size 576 1152 --batch_size 8;  
python baseline.py --save_path baseline_run_deeplabv3_resnet101 --model DeepLabv3_resnet101 --train_size 512 1024 --test_size 512 1024 --crop_size 384 768 --batch_size 8; 

5.3 损失函数

有3种损失函数可供选择,分别是:交叉熵损失函数(Cross-Entropy Loss)、类别加权交叉熵损失函数(Class-Weighted Cross
Entropy Loss)和焦点损失函数(Focal Loss)。

交叉熵损失函数,常用在大多数语义分割场景,但它有一个明显的缺点,那就是对于只用分割前景和背景的时候,当前景像素的数量远远小于背景像素的数量时,模型严重偏向背景,导致效果不好。

# Cross Entropy Loss  
python baseline.py --save_path baseline_run_deeplabv3_resnet50 --crop_size 576 1152 --batch_size 8; 

类别加权交叉熵损失函数是在交叉熵损失函数的基础上为每一个类别添加了一个权重参数,使其在样本数量不均衡的情况下可以获得更好的效果。

# Weighted Cross Entropy Loss  
python baseline.py --save_path baseline_run_deeplabv3_resnet50_wce --crop_size 576 1152 --batch_size 8 --loss weighted_ce; 

焦点损失函数则更进一步,用来解决难易样本数量不平衡。

# Focal Loss  
python baseline.py --save_path baseline_run_deeplabv3_resnet50_focal --crop_size 576 1152 --batch_size 8 --loss focal --focal_gamma 2.0; 

5.4 归一化层

在这里插入图片描述

BN是在batch上,对N、H、W做归一化,而保留通道 C 的维度。BN对较小的batch size效果不好。

5.5 数据增强

2种数据增强技术

  • CutMix
  • Copy Blob

在 Blob 存储的基础上构建,并通过Copy的方式增强了性能。

在这里插入图片描述

另外,如果要解决前面所提到的类别不平衡问题,则可以使用视觉归纳优先的CopyBlob进行增强。

# CopyBlob Augmentation  
python baseline.py --save_path baseline_run_deeplabv3_resnet50_copyblob --crop_size 576 1152 --batch_size 8 --copyblob; 

5.6 实现效果

多尺度推断

使用[0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.2]进行多尺度推理。另外,使用H-Flip,同时必须使用单一批次。

# Multi-Scale Inference  
python baseline.py --save_path baseline_run_deeplabv3_resnet50 --batch_size 1 --predict --mst; 

使用验证集计算度量

计算指标并将结果保存到results.txt中。

python evaluate.py --results baseline_run_deeplabv3_resnet50/results_val --batch_size 1 --predict --mst; 

训练结果
在这里插入图片描述

最后的单一模型结果是0.6069831962012341,

如果使用了更大的模型或者更大的网络结构,性能可能会有所提高。

另外,如果使用了各种集成模型,性能也会有所提高。

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1292671.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探索SpringBoot发展历程

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; 循序渐进学SpringBoot ✨特色专栏&…

《消息队列MyMQ》——参考RabbitMQ实现

目录 一、什么是消息队列&#xff1f; 二、需求分析 1&#xff09;核心概念 2&#xff09;核心API 3&#xff09;交换机类型 4&#xff09;持久化 5&#xff09;网络通信 ​编辑 6&#xff09;消息应答 三、 模块划分 四、创建核心类 1.ExChange 2.MSGQueue 3.Bind…

系列学习前端之第 4 章:一文精通 JavaScript

全套学习 HTMLCSSJavaScript 代码和笔记请下载网盘的资料&#xff1a; 链接: 百度网盘 请输入提取码 提取码: 6666 1、JavaScript 格式 一般放在 html 的 <head> 标签中。type&#xff1a;默认值text/javascript可以不写&#xff0c;不写也是这个值。 <script typ…

C++新经典模板与泛型编程:用成员函数重载实现std::is_class

用成员函数重载实现is_class std::is_class功能&#xff0c;是一个C11标准中用于判断某个类型是否为一个类类型&#xff08;但不是联合类型&#xff09;的类模板。当时在讲解的时候并没有涉及std::is_class的实现代码&#xff0c;在这里实现一下。简单地书写一个IsClass类模板…

【微服务】springboot整合quartz使用详解

目录 一、前言 二、quartz介绍 2.1 quartz概述 2.2 quartz优缺点 2.3 quartz核心概念 2.3.1 Scheduler 2.3.2 Trigger 2.3.3 Job 2.3.4 JobDetail 2.4 Quartz作业存储类型 2.5 适用场景 三、Cron表达式 3.1 Cron表达式语法 3.2 Cron表达式各元素说明 3.3 Cron表达…

从文字到使用,一文读懂Kafka服务使用

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

【改进YOLOv8】融合高效网络架构 CloAtt的焊缝识别系统

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 近年来&#xff0c;随着人工智能技术的快速发展&#xff0c;计算机视觉领域取得了显著的进展。其中&#xff0c;目标检测是计算机视觉领域的一个重要研究方向&am…

“消费增值:改变你的购物方式,让每一笔消费都变得更有价值“

你是否厌倦了仅仅购买物品或享受服务后便一无所有的消费方式&#xff1f;现在&#xff0c;消费增值的概念将彻底改变你的消费观念&#xff01;通过参与消费增值&#xff0c;你的每一笔消费都将变得更有价值&#xff01; 消费增值是一种全新的消费理念&#xff0c;它让你在购物的…

[BJDCTF2020]EzPHP 许多的特性

这道题可以学到很多东西 静下心来慢慢通过本地知道是干嘛用的就可以学会了 BJDctf2020 Ezphp_[bjdctf2020]ezphp-CSDN博客 这里开始 一部分一部分看 $_SERVER[QUERY_SRING]的漏洞 if($_SERVER) { if (preg_match(/shana|debu|aqua|cute|arg|code|flag|system|exec|passwd|…

SSM项目实战-前端-添加分页控件-调正页面布局

1、Index.vue <template><div class"common-layout"><el-container><el-header><el-row><el-col :span"24"><el-button type"primary" plain click"toAdd">新增</el-button></el-…

三坐标测量机如何精确测量产品的高度差?

三坐标测量机通过测量物体的三维坐标来实现精确的尺寸测量&#xff0c;不仅直观且又方便&#xff0c;测量结果精度高&#xff0c;并且重复性好。 三坐标测量机基于三个坐标轴&#xff1a;X轴、Y轴和Z轴&#xff0c;通过控制测针在三个方向上的移动来实现测量。而在测量产品高度…

1.10 C语言之外部变量与作用域

1.10 C语言之外部变量与作用域 一、外部变量概述二、练习 一、外部变量概述 我们说&#xff0c;函数&#xff08;不管是main函数还是其他函数&#xff09;内部定义的变量&#xff0c;其作用范围都只在函数内部&#xff0c;我们把这些变量叫做自动变量或者局部变量。除了局部变…

ingress介绍和ingress通过LoadBalancer暴露服务配置

目录 一.ingress基本原理介绍 1.将原有用于暴露服务和负载均衡的服务的三四层负载均衡变为一个七层负载均衡 2.controller和ingress 3.通过下面这个图可能会有更直观的理解 二.为什么会出现ingress 1.NodePort存在缺点 2.LoadBalancer存在缺点 三.ingress三种暴露服务的…

docker-compose部署sonarqube 8.9 版本

官方部署文档注意需求版本 所以选择8.9版本 一、准备部署配置 1、持久化目录 rootlocalhost:/root# mkdir -p /data/sonar/postgres /data/sonar/sonarqube/data /data/sonar/sonarqube/logs /data/sonar/sonarqube/extensions rootlocalhost:/root# chmod 777 /data/sona…

数据结构 | 查漏补缺之求叶子结点,分离链接法、最小生成树、DFS、BFS

求叶子结点的个数 参考博文&#xff1a; 树中的叶子结点的个数 计算方法_求树的叶子节点个数-CSDN博客 分离链接法 参考博文 数据结构和算法——哈希查找冲突处理方法&#xff08;开放地址法-线性探测、平方探测、双散列探测、再散列&#xff0c;分离链接法&#xff09;_线性…

用户案例|Milvus 助力 Credal.AI 实现 GenAI 安全与可控

AIGC 时代&#xff0c;企业流程中是否整合人工智能&#xff08;AI&#xff09;对于的企业竞争力至关重要。然而&#xff0c;随着 AI 不断发展演进&#xff0c;企业也在此过程中面临数据安全管理、访问权限、数据隐私等方面的挑战。 为了更好地解决上述问题&#xff0c;Credal.A…

双目光波导AR眼镜_AR智能眼镜主板PCB定制开发

AR眼镜方案的未来发展潜力非常巨大。随着技术的进步&#xff0c;AR眼镜的光学模块将变得更小巧&#xff0c;像素密度也会增加&#xff0c;实现更高分辨率的画面&#xff0c;甚至能够达到1080P、2K和4K级别的清晰度&#xff0c;从而提升用户的视觉体验。 AR智能眼镜的硬件方面&a…

【Android Studio】【入门】helloworld和工程的各个文件的作用

这里写目录标题 可以开发的app类型注意点 搞一个helloworld玩玩各个文件的作用 可以开发的app类型 Phone and Tablet&#xff1a;开发手机和平板的app&#xff1b;Wear OS&#xff1a;穿戴系统&#xff1b;TV&#xff1a;电视app&#xff1b;Android Auto&#xff1a;汽车上的…

了解Linux网络配置

本章主要介绍网络配置的方法。 网络基础知识 查看网络信息 图形化界面修改 通过配置文件修改 命令行管理 11.1 网络基础知识 一台主机需要配置必要的网络信息&#xff0c;才可以连接到互联网。需要的配置网络信息包括IP、 子网掩码、网关和 DNS。 11.1.1 IP 地址 在计算机…

AI文本生成工具-免费AI文本生成软件

在当今数字时代&#xff0c;人工智能技术的快速发展不仅改变了我们的生活方式&#xff0c;还在创作领域崭露头角。其中&#xff0c;AI文本生成技术的迅猛发展引起了广泛关注。本文将深入探讨AI文本生成的方法、工具以及一些关键技巧&#xff0c;帮助读者更好地了解并利用这一前…