在Ascend昇腾硬件用npu加速paddleLite版本ocr(nnadapter)

news2025/1/9 1:43:38

在Ascend昇腾硬件用npu加速paddleLite版本ocr(nnadapter)

  • 参考文档
    • * nnadapter参考文档地址
    • * 华为昇腾 NPU参考文档地址
    • * PaddleLite的C++API参考文档
  • 一.确保cpu版本运行正常
  • 二.编译Ascend上npu加速库
  • 三.跑通npu加速版本Demo
    • 1.Demo下载地址
    • 2.参考手册网址
    • 3.改脚本run.sh
      • (1).改参数HUAWEI_ASCEND_TOOLKIT_HOME
      • (2).改参数NNADAPTER_DEVICE_NAMES,NNADAPTER_MODEL_CACHE_DIR,NNADAPTER_MODEL_CACHE_TOKEN
    • 4.完整log日志
      • 不包含转nnc模型的日志
      • 包含转nnc模型的日志
  • 四.将ocr代码改成nnadapter与ascendnpu格式
  • 五.必须设置环境变量!
    • 1.写入环境变量
    • 2.脚本里写进临时环境变量
  • 五.部分模型不能成功转成nnc格式加速的问题
  • 六.考虑其他办法

参考文档

* nnadapter参考文档地址

https://www.paddlepaddle.org.cn/inference/develop_guides/nnadapter.html#id3

* 华为昇腾 NPU参考文档地址

https://www.paddlepaddle.org.cn/lite/develop/demo_guides/huawei_ascend_npu.html#npu

* PaddleLite的C++API参考文档

https://www.paddlepaddle.org.cn/lite/develop/api_reference/cxx_api_doc.html#place

一.确保cpu版本运行正常

参考我之前的教程
http://t.csdnimg.cn/Nd4Qv

二.编译Ascend上npu加速库

在这里插入图片描述
之前的教程有提到过编译ascend_npu加速库失败,后来发现是paddleLite与ascend-toolkit版本不兼容的问题,所以导致未知原因的编译失败,这次用到的是2.10版本的paddleLite与5.0.2.alpha003的toolkit最后编译成功
在这里插入图片描述

三.跑通npu加速版本Demo

1.Demo下载地址

https://paddlelite-demo.bj.bcebos.com/devices/generic/PaddleLite-generic-demo.tar.gz

2.参考手册网址

https://www.paddlepaddle.org.cn/lite/develop/demo_guides/huawei_ascend_npu.html#npu-paddle-lite

3.改脚本run.sh

(1).改参数HUAWEI_ASCEND_TOOLKIT_HOME

注意将HUAWEI_ASCEND_TOOLKIT_HOME这个参数的地址改成自己的昇腾toolkit地址,不然不能调用npu加速

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.:../../libs/PaddleLite/$TARGET_OS/$TARGET_ABI/lib:../../libs/PaddleLite/$TARGET_OS/$TARGET_ABI/lib/$NNADAPTER_DEVICE_NAMES:../../libs/PaddleLite/$TARGET_OS/$TARGET_ABI/lib/cpu
if [ "$NNADAPTER_DEVICE_NAMES" == "huawei_ascend_npu" ]; then
    HUAWEI_ASCEND_TOOLKIT_HOME="/home/HwHiAiUser/Ascend/ascend-toolkit/5.0.2.alpha003" #"/usr/local/Ascend/ascend-toolkit/6.0.RC1.alpha003"
    if [ "$TARGET_OS" == "linux" ]; then
      if [[ "$TARGET_ABI" != "arm64" && "$TARGET_ABI" != "amd64" ]]; then
        echo "Unknown OS $TARGET_OS, only supports 'arm64' or 'amd64' for Huawei Ascend NPU."
        exit -1
      fi
    else
      echo "Unknown OS $TARGET_OS, only supports 'linux' for Huawei Ascend NPU."
      exit -1
    fi
    NNADAPTER_CONTEXT_PROPERTIES="HUAWEI_ASCEND_NPU_SELECTED_DEVICE_IDS=0"
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib64:$HUAWEI_ASCEND_TOOLKIT_HOME/fwkacllib/lib64:$HUAWEI_ASCEND_TOOLKIT_HOME/acllib/lib64:$HUAWEI_ASCEND_TOOLKIT_HOME/atc/lib64:$HUAWEI_ASCEND_TOOLKIT_HOME/opp/op_proto/built-in
    export PYTHONPATH=$PYTHONPATH:$HUAWEI_ASCEND_TOOLKIT_HOME/fwkacllib/python/site-packages:$HUAWEI_ASCEND_TOOLKIT_HOME/acllib/python/site-packages:$HUAWEI_ASCEND_TOOLKIT_HOME/toolkit/python/site-packages:$HUAWEI_ASCEND_TOOLKIT_HOME/atc/python/site-packages:$HUAWEI_ASCEND_TOOLKIT_HOME/pyACL/python/site-packages/acl
    export PATH=$PATH:$HUAWEI_ASCEND_TOOLKIT_HOME/atc/ccec_compiler/bin:${HUAWEI_ASCEND_TOOLKIT_HOME}/acllib/bin:$HUAWEI_ASCEND_TOOLKIT_HOME/atc/bin
    export ASCEND_AICPU_PATH=$HUAWEI_ASCEND_TOOLKIT_HOME
    export ASCEND_OPP_PATH=$HUAWEI_ASCEND_TOOLKIT_HOME/opp
    export TOOLCHAIN_HOME=$HUAWEI_ASCEND_TOOLKIT_HOME/toolkit
    export ASCEND_SLOG_PRINT_TO_STDOUT=1
    export ASCEND_GLOBAL_LOG_LEVEL=1
fi

(2).改参数NNADAPTER_DEVICE_NAMES,NNADAPTER_MODEL_CACHE_DIR,NNADAPTER_MODEL_CACHE_TOKEN

NNADAPTER_DEVICE_NAMES="huawei_ascend_npu"

NNADAPTER_MODEL_CACHE_DIR是装nnc模型的文件夹,最开始没有生成nnc模型的时候就只用写指定生成模型地址,
NNADAPTER_MODEL_CACHE_TOKEN=“null”,在保存nnc模型后,将NNADAPTER_MODEL_CACHE_TOKEN参数写为生成后的模型名字

在这里插入图片描述

在这里插入图片描述

4.完整log日志

发现调用npu是用了这样一个过程,先将nb格式的模型转成,nnc格式,然后再npu调用这个nnc格式模型进行加速推理,如果已经转过nnc格式保存在相应文件夹,就会直接调用这个nnc模型,省略了这个转模型的步骤,直接进行推理

不包含转nnc模型的日志

huawei_ascend_npu null /home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/cache 54de7d70d80b9883fb1f8d10f70de40e null
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 268----------------
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 284----------------
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 288----------------
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 300----------------
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 305----------------
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 307----------------
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 371----------------
[I 11/16  2:59: 7.580 ...lic/paddle-lite/lite/core/device_info.cc:1118 Setup] ARM multiprocessors name: 
[I 11/16  2:59: 7.580 ...lic/paddle-lite/lite/core/device_info.cc:1119 Setup] ARM multiprocessors number: 8
[I 11/16  2:59: 7.580 ...lic/paddle-lite/lite/core/device_info.cc:1121 Setup] ARM multiprocessors ID: 0, max freq: 0, min freq: 0, cluster ID: 0, CPU ARCH: A55
[I 11/16  2:59: 7.580 ...lic/paddle-lite/lite/core/device_info.cc:1121 Setup] ARM multiprocessors ID: 1, max freq: 0, min freq: 0, cluster ID: 0, CPU ARCH: A55
[I 11/16  2:59: 7.580 ...lic/paddle-lite/lite/core/device_info.cc:1121 Setup] ARM multiprocessors ID: 2, max freq: 0, min freq: 0, cluster ID: 0, CPU ARCH: A55
[I 11/16  2:59: 7.580 ...lic/paddle-lite/lite/core/device_info.cc:1121 Setup] ARM multiprocessors ID: 3, max freq: 0, min freq: 0, cluster ID: 0, CPU ARCH: A55
[I 11/16  2:59: 7.580 ...lic/paddle-lite/lite/core/device_info.cc:1121 Setup] ARM multiprocessors ID: 4, max freq: 0, min freq: 0, cluster ID: 0, CPU ARCH: A55
[I 11/16  2:59: 7.580 ...lic/paddle-lite/lite/core/device_info.cc:1121 Setup] ARM multiprocessors ID: 5, max freq: 0, min freq: 0, cluster ID: 0, CPU ARCH: A55
[I 11/16  2:59: 7.580 ...lic/paddle-lite/lite/core/device_info.cc:1121 Setup] ARM multiprocessors ID: 6, max freq: 0, min freq: 0, cluster ID: 0, CPU ARCH: A55
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1121 Setup] ARM multiprocessors ID: 7, max freq: 0, min freq: 0, cluster ID: 0, CPU ARCH: A55
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1127 Setup] L1 DataCache size is: 
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1129 Setup] 32 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1129 Setup] 32 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1129 Setup] 32 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1129 Setup] 32 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1129 Setup] 32 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1129 Setup] 32 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1129 Setup] 32 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1129 Setup] 32 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1131 Setup] L2 Cache size is: 
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1133 Setup] 512 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1133 Setup] 512 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1133 Setup] 512 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1133 Setup] 512 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1133 Setup] 512 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1133 Setup] 512 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1133 Setup] 512 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1133 Setup] 512 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1135 Setup] L3 Cache size is: 
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1137 Setup] 0 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1137 Setup] 0 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1137 Setup] 0 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1137 Setup] 0 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1137 Setup] 0 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1137 Setup] 0 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1137 Setup] 0 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1137 Setup] 0 KB
[I 11/16  2:59: 7.581 ...lic/paddle-lite/lite/core/device_info.cc:1139 Setup] Total memory: 7952452KB
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 398----------------
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 399----------------
[4 11/16  2:59: 7.619 ...e-lite/lite/model_parser/model_parser.cc:780 LoadModelNaiveFromFile] Meta_version:2
[4 11/16  2:59: 7.619 ...e-lite/lite/model_parser/model_parser.cc:873 LoadModelFbsFromFile] Opt_version:9dd4e2655
[4 11/16  2:59: 7.619 ...e-lite/lite/model_parser/model_parser.cc:888 LoadModelFbsFromFile] topo_size: 74904
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.621 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.622 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.623 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.624 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.625 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:226 InputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:247 OutputArgumentNames] This function call is expensive.
[5 11/16  2:59: 7.626 .../lite/model_parser/flatbuffers/op_desc.h:272 AttrNames] This function call is expensive.
[4 11/16  2:59: 7.673 ...e-lite/lite/model_parser/model_parser.cc:803 LoadModelNaiveFromFile] paddle_version:0
[4 11/16  2:59: 7.673 ...e-lite/lite/model_parser/model_parser.cc:804 LoadModelNaiveFromFile] Load naive buffer model in '/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/assets/models/mobilenet_v1_fp32_224.nb' successfully
[3 11/16  2:59: 7.674 .../public/paddle-lite/lite/core/program.cc:327 RuntimeProgram] Found the attr '__@kernel_type_attr@__': feed/def/1/4/2 for feed
[5 11/16  2:59: 7.674 .../public/paddle-lite/lite/core/op_lite.cc:90 operator()] pick kernel for feed host/any/any get 1 kernels
[5 11/16  2:59: 7.674 .../public/paddle-lite/lite/core/op_lite.cc:124 CreateKernels] op feed get 1 kernels
[3 11/16  2:59: 7.674 .../public/paddle-lite/lite/core/program.cc:327 RuntimeProgram] Found the attr '__@kernel_type_attr@__': subgraph/def/18/4/1 for subgraph
[5 11/16  2:59: 7.674 .../public/paddle-lite/lite/core/op_lite.cc:90 operator()] pick kernel for subgraph nnadapter/any/NCHW get 1 kernels
[5 11/16  2:59: 7.675 .../public/paddle-lite/lite/core/op_lite.cc:90 operator()] pick kernel for subgraph nnadapter/any/any get 0 kernels
[5 11/16  2:59: 7.675 .../public/paddle-lite/lite/core/op_lite.cc:124 CreateKernels] op subgraph get 1 kernels
[3 11/16  2:59: 7.675 .../public/paddle-lite/lite/core/program.cc:327 RuntimeProgram] Found the attr '__@kernel_type_attr@__': fetch/def/1/4/2 for fetch
[5 11/16  2:59: 7.675 .../public/paddle-lite/lite/core/op_lite.cc:90 operator()] pick kernel for fetch host/any/any get 1 kernels
[5 11/16  2:59: 7.675 .../public/paddle-lite/lite/core/op_lite.cc:124 CreateKernels] op fetch get 1 kernels
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 403----------------
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 196----------------
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 202----------------
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:60 Initialize] The NNAdapter library libnnadapter.so is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:73 Initialize] NNAdapter_getVersion is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:74 Initialize] NNAdapter_getDeviceCount is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:75 Initialize] NNAdapterDevice_acquire is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:76 Initialize] NNAdapterDevice_release is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:77 Initialize] NNAdapterDevice_getName is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:78 Initialize] NNAdapterDevice_getVendor is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:79 Initialize] NNAdapterDevice_getType is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:80 Initialize] NNAdapterDevice_getVersion is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:81 Initialize] NNAdapterContext_create is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:82 Initialize] NNAdapterContext_destroy is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:83 Initialize] NNAdapterModel_create is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:84 Initialize] NNAdapterModel_destroy is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:85 Initialize] NNAdapterModel_finish is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:86 Initialize] NNAdapterModel_addOperand is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:87 Initialize] NNAdapterModel_setOperandValue is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:88 Initialize] NNAdapterModel_getOperandType is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:89 Initialize] NNAdapterModel_addOperation is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:90 Initialize] NNAdapterModel_identifyInputsAndOutputs is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:91 Initialize] NNAdapterCompilation_create is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:92 Initialize] NNAdapterCompilation_destroy is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:93 Initialize] NNAdapterCompilation_finish is loaded.
[4 11/16  2:59: 7.693 .../backends/nnadapter/nnadapter_wrapper.cc:94 Initialize] NNAdapterCompilation_queryInputsAndOutputs is loaded.
[4 11/16  2:59: 7.694 .../backends/nnadapter/nnadapter_wrapper.cc:95 Initialize] NNAdapterExecution_create is loaded.
[4 11/16  2:59: 7.694 .../backends/nnadapter/nnadapter_wrapper.cc:96 Initialize] NNAdapterExecution_destroy is loaded.
[4 11/16  2:59: 7.694 .../backends/nnadapter/nnadapter_wrapper.cc:97 Initialize] NNAdapterExecution_setInput is loaded.
[4 11/16  2:59: 7.694 .../backends/nnadapter/nnadapter_wrapper.cc:98 Initialize] NNAdapterExecution_setOutput is loaded.
[4 11/16  2:59: 7.694 .../backends/nnadapter/nnadapter_wrapper.cc:99 Initialize] NNAdapterExecution_compute is loaded.
[4 11/16  2:59: 7.694 .../backends/nnadapter/nnadapter_wrapper.cc:101 Initialize] Extract all of symbols from libnnadapter.so done.
[5 11/16  2:59: 7.878 ...pter/driver/huawei_ascend_npu/utility.cc:36 InitializeAscendCL] Initialize AscendCL.
[3 11/16  2:59: 7.990 ...le-lite/lite/kernels/nnadapter/engine.cc:295 Engine] NNAdapter device huawei_ascend_npu: vendor=Huawei type=2 version=1
[3 11/16  2:59: 7.990 ...le-lite/lite/kernels/nnadapter/engine.cc:306 Engine] NNAdapter context_properties: 
[I 11/16  2:59: 7.990 ...apter/driver/huawei_ascend_npu/engine.cc:34 Context] properties: 
[I 11/16  2:59: 7.990 ...apter/driver/huawei_ascend_npu/engine.cc:51 Context] selected device ids: 
[I 11/16  2:59: 7.990 ...apter/driver/huawei_ascend_npu/engine.cc:53 Context] 0
[3 11/16  2:59: 7.990 ...le-lite/lite/kernels/nnadapter/engine.cc:313 Engine] NNAdapter model_cache_dir: /home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/cache
[3 11/16  2:59: 7.990 ...le-lite/lite/kernels/nnadapter/engine.cc:348 Run] NNAdapter model_cache_token: 54de7d70d80b9883fb1f8d10f70de40e
[3 11/16  2:59: 8.  6 ...le-lite/lite/kernels/nnadapter/engine.cc:351 Run] NNAdapter model_cache_buffer size: 10308356
[I 11/16  2:59: 8.262 ...adapter/nnadapter/runtime/compilation.cc:65 Compilation] Deserialize the cache models from memory success.
[I 11/16  2:59: 8.262 ...apter/driver/huawei_ascend_npu/driver.cc:66 CreateProgram] Create program for huawei_ascend_npu.
[3 11/16  2:59: 8.262 ...apter/driver/huawei_ascend_npu/engine.cc:91 Build] Model input count: 1
[3 11/16  2:59: 8.262 ...apter/driver/huawei_ascend_npu/engine.cc:94 Build] Model output count: 1
[5 11/16  2:59: 8.262 ...driver/huawei_ascend_npu/model_client.cc:29 AclModelClient] Create a ACL model client(device_id=0)
[3 11/16  2:59: 8.263 ...driver/huawei_ascend_npu/model_client.cc:33 AclModelClient] device_count: 1
[5 11/16  2:59: 8.263 ...driver/huawei_ascend_npu/model_client.cc:48 InitAclClientEnv] ACL set device(device_id_=0)
[5 11/16  2:59: 8.395 ...driver/huawei_ascend_npu/model_client.cc:50 InitAclClientEnv] ACL create context
[3 11/16  2:59: 8.551 ...driver/huawei_ascend_npu/model_client.cc:199 CreateModelIODataset] input_count: 1
[5 11/16  2:59: 8.551 ...driver/huawei_ascend_npu/model_client.cc:202 CreateModelIODataset] The buffer length of model input tensor 0:602112
[3 11/16  2:59: 8.552 ...driver/huawei_ascend_npu/model_client.cc:217 CreateModelIODataset] output_count: 1
[5 11/16  2:59: 8.552 ...driver/huawei_ascend_npu/model_client.cc:220 CreateModelIODataset] The buffer length of model output tensor 0:4000
[5 11/16  2:59: 8.552 ...driver/huawei_ascend_npu/model_client.cc:229 CreateModelIODataset] Create input and output dataset success.
[3 11/16  2:59: 8.552 ...driver/huawei_ascend_npu/model_client.cc:113 LoadModel] Load a ACL model success.
[3 11/16  2:59: 8.552 ...driver/huawei_ascend_npu/model_client.cc:156 GetModelIOTensorDim] input_count: 1
[5 11/16  2:59: 8.553 ...pter/driver/huawei_ascend_npu/utility.cc:365 ConvertACLFormatToGEFormat] geFormat: FORMAT_ND = 2
[5 11/16  2:59: 8.553 ...pter/driver/huawei_ascend_npu/utility.cc:344 ConvertACLDataTypeToGEDataType] geDataType: DT_FLOAT=0
[3 11/16  2:59: 8.553 ...driver/huawei_ascend_npu/model_client.cc:170 GetModelIOTensorDim] output_count: 1
[5 11/16  2:59: 8.553 ...pter/driver/huawei_ascend_npu/utility.cc:365 ConvertACLFormatToGEFormat] geFormat: FORMAT_ND = 2
[5 11/16  2:59: 8.553 ...pter/driver/huawei_ascend_npu/utility.cc:344 ConvertACLDataTypeToGEDataType] geDataType: DT_FLOAT=0
[5 11/16  2:59: 8.553 ...driver/huawei_ascend_npu/model_client.cc:183 GetModelIOTensorDim] Get input and output dimensions from a ACL model success.
[3 11/16  2:59: 8.553 ...apter/driver/huawei_ascend_npu/engine.cc:171 Build] CANN input tensors[0]: {1,3,224,224} 1,3,224,224
[3 11/16  2:59: 8.553 ...apter/driver/huawei_ascend_npu/engine.cc:192 Build] CANN output tensors[0]: {1,1000} 1,1000
[3 11/16  2:59: 8.553 ...apter/driver/huawei_ascend_npu/engine.cc:208 Build] Build success.
[3 11/16  2:59: 8.563 ...driver/huawei_ascend_npu/model_client.cc:343 Process] Process cost 2444 us
[5 11/16  2:59: 8.563 ...driver/huawei_ascend_npu/model_client.cc:370 Process] Process a ACL model success.
[3 11/16  2:59: 8.563 ...le-lite/lite/kernels/nnadapter/engine.cc:232 Execute] Process cost 3503 us
--------------/home/HwHiAiUser/wjp/hw_ocr/govern_test/image_classification_demo/shell/image_classification_demo.cc  Line: 205----------------
[3 11/16  2:59: 8.566 ...driver/huawei_ascend_npu/model_client.cc:343 Process] Process cost 2102 us
[5 11/16  2:59: 8.566 ...driver/huawei_ascend_npu/model_client.cc:370 Process] Process a ACL model success.
[3 11/16  2:59: 8.566 ...le-lite/lite/kernels/nnadapter/engine.cc:232 Execute] Process cost 2734 us
iter 0 cost: 2.798000 ms
[3 11/16  2:59: 8.579 ...driver/huawei_ascend_npu/model_client.cc:343 Process] Process cost 1997 us
[5 11/16  2:59: 8.579 ...driver/huawei_ascend_npu/model_client.cc:370 Process] Process a ACL model success.
[3 11/16  2:59: 8.579 ...le-lite/lite/kernels/nnadapter/engine.cc:232 Execute] Process cost 2906 us
iter 1 cost: 2.994000 ms
[3 11/16  2:59: 8.592 ...driver/huawei_ascend_npu/model_client.cc:343 Process] Process cost 2004 us
[5 11/16  2:59: 8.592 ...driver/huawei_ascend_npu/model_client.cc:370 Process] Process a ACL model success.
[3 11/16  2:59: 8.592 ...le-lite/lite/kernels/nnadapter/engine.cc:232 Execute] Process cost 2917 us
iter 2 cost: 2.995000 ms
[3 11/16  2:59: 8.605 ...driver/huawei_ascend_npu/model_client.cc:343 Process] Process cost 2653 us
[5 11/16  2:59: 8.606 ...driver/huawei_ascend_npu/model_client.cc:370 Process] Process a ACL model success.
[3 11/16  2:59: 8.606 ...le-lite/lite/kernels/nnadapter/engine.cc:232 Execute] Process cost 3519 us
iter 3 cost: 3.594000 ms
[3 11/16  2:59: 8.618 ...driver/huawei_ascend_npu/model_client.cc:343 Process] Process cost 1777 us
[5 11/16  2:59: 8.619 ...driver/huawei_ascend_npu/model_client.cc:370 Process] Process a ACL model success.
[3 11/16  2:59: 8.619 ...le-lite/lite/kernels/nnadapter/engine.cc:232 Execute] Process cost 2637 us
iter 4 cost: 2.721000 ms
warmup: 1 repeat: 5, average: 3.020400 ms, max: 3.594000 ms, min: 2.721000 ms
results: 3
Top0  tabby, tabby cat - 0.529785
Top1  Egyptian cat - 0.418945
Top2  tiger cat - 0.045227
Preprocess time: 1.720000 ms
Prediction time: 3.020400 ms
Postprocess time: 0.393000 ms

[I 11/16  2:59: 8.633 ...apter/driver/huawei_ascend_npu/driver.cc:85 DestroyProgram] Destroy program for huawei_ascend_npu.
[5 11/16  2:59: 8.633 ...driver/huawei_ascend_npu/model_client.cc:252 DestroyDataset] Destroy a ACL dataset success.
[5 11/16  2:59: 8.633 ...driver/huawei_ascend_npu/model_client.cc:252 DestroyDataset] Destroy a ACL dataset success.
[5 11/16  2:59: 8.643 ...driver/huawei_ascend_npu/model_client.cc:141 UnloadModel] Unload a ACL model success(model_id=1)
[5 11/16  2:59: 8.643 ...driver/huawei_ascend_npu/model_client.cc:55 FinalizeAclClientEnv] Destroy ACL context
[5 11/16  2:59: 8.645 ...driver/huawei_ascend_npu/model_client.cc:60 FinalizeAclClientEnv] Reset ACL device(device_id_=0)
[5 11/16  2:59: 8.649 ...driver/huawei_ascend_npu/model_client.cc:79 FinalizeAclProfilingEnv] Destroy ACL profiling config
[5 11/16  2:59: 8.657 ...pter/driver/huawei_ascend_npu/utility.cc:26 FinalizeAscendCL] Finalize AscendCL.

包含转nnc模型的日志

四.将ocr代码改成nnadapter与ascendnpu格式

通过研究demo发现,,paddleLite调用ascend加速npu的代码最重要的是在添加nnadapter_device参数,在昇腾上就应该设置为huawei_ascend_npu
在这里插入图片描述
下面的红框部分是我依据Demo改写的,但是会报不知名错误
在这里插入图片描述
暂不知道具体因为什么原因
在这里插入图片描述

五.必须设置环境变量!

必须将ascend相关环境写进环境变量,且不可再调用可执行文件的脚本里重复export环境变量,不然还会出现奇奇怪怪的错误

1.写入环境变量

vim ~/.bashrc

参考自己环境里的相关ascend-toolkit装在什么地址来改写

export LD_LIBRARY_PATH=/usr/local/Ascend/acllib/lib64
export install_path=/usr/local/Ascend/ascend-toolkit/latest
#软件包安装路径,请根据实际情况修改
export ASCEND_OPP_PATH=${install_path}/opp
export ASCEND_AICPU_PATH=${install_path}/arm64-linux    #其中{arch}请根据实际情况替换(arm64或x86_64)
export TOOLCHAIN_HOME=${install_path}/toolkit
#开发离线推理程序时配置
export LD_LIBRARY_PATH=${install_path}/acllib/lib64:$LD_LIBRARY_PATH
export PYTHONPATH=${install_path}/toolkit/python/site-packages:${install_path}/pyACL/python/site-packages/acl:$PYTHONPATH
#进行模型转换算子开发时配置
export LD_LIBRARY_PATH=${install_path}/atc/lib64:$LD_LIBRARY_PATH
export PATH=${install_path}/atc/ccec_compiler/bin:${install_path}/atc/bin:$PATH
export PYTHONPATH=${install_path}/toolkit/python/site-packages:${install_path}/atc/python/site-packages:$PYTHONPATH
# 配置python3.7.5环境变量,请根据实际路径替换
export LD_LIBRARY_PATH=/usr/local/python3.7.5/lib:/home/HwHiAiUser/aicamera/lib:$LD_LIBRARY_PATH
export PATH=/usr/local/python3.7.5/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/protobuf/lib:$LD_LIBRARY_PATH
                                                                                                      182,1         Bot

2.脚本里写进临时环境变量

# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.:../../libs/PaddleLite/$TARGET_OS/$TARGET_ABI/lib:../../libs/PaddleLite/$TARGET_OS/$TARGET_ABI/lib/$NNADAPTER_DEVICE_NAMES:../../libs/PaddleLite/$TARGET_OS/$TARGET_ABI/lib/cpu
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/HwHiAiUser/wjp/hw_ocr/govern_test/libs/PaddleLite/linux/arm64/lib
    # HUAWEI_ASCEND_TOOLKIT_HOME="/usr/local/Ascend/ascend-toolkit/5.0.2.alpha003" #"/usr/local/Ascend/ascend-toolkit/6.0.RC1.alpha003"
    NNADAPTER_CONTEXT_PROPERTIES="HUAWEI_ASCEND_NPU_SELECTED_DEVICE_IDS=0"
    # export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/Ascend/driver/lib64
    # export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/Ascend/driver/lib64/stub
    # export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HUAWEI_ASCEND_TOOLKIT_HOME/fwkacllib/lib64
    # export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HUAWEI_ASCEND_TOOLKIT_HOME/acllib/lib64
    # export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HUAWEI_ASCEND_TOOLKIT_HOME/atc/lib64
    # export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HUAWEI_ASCEND_TOOLKIT_HOME/opp/op_proto/built-in

    # export PYTHONPATH=$PYTHONPATH:$HUAWEI_ASCEND_TOOLKIT_HOME/fwkacllib/python/site-packages:$HUAWEI_ASCEND_TOOLKIT_HOME/acllib/python/site-packages:$HUAWEI_ASCEND_TOOLKIT_HOME/toolkit/python/site-packages:$HUAWEI_ASCEND_TOOLKIT_HOME/atc/python/site-packages:$HUAWEI_ASCEND_TOOLKIT_HOME/pyACL/python/site-packages/acl
    # export PATH=$PATH:$HUAWEI_ASCEND_TOOLKIT_HOME/atc/ccec_compiler/bin:${HUAWEI_ASCEND_TOOLKIT_HOME}/acllib/bin:$HUAWEI_ASCEND_TOOLKIT_HOME/atc/bin
    # export ASCEND_AICPU_PATH=$HUAWEI_ASCEND_TOOLKIT_HOME
    # export ASCEND_OPP_PATH=$HUAWEI_ASCEND_TOOLKIT_HOME/opp
    # export TOOLCHAIN_HOME=$HUAWEI_ASCEND_TOOLKIT_HOME/toolkit
    # export ASCEND_SLOG_PRINT_TO_STDOUT=1
    # export ASCEND_GLOBAL_LOG_LEVEL=1

在这里插入图片描述
可执行程序在运行的时候需要调用相应动态库才能运行,所以需要写入临时环境变量。

五.部分模型不能成功转成nnc格式加速的问题

然后我想到了一个新方法,直接用能成功调用npu加速的Demo来直接将这些ocr模型转换成加密nnc格式

  • ascend文档
    https://www.paddlepaddle.org.cn/lite/develop/demo_guides/huawei_ascend_npu.html#npu
    在这里插入图片描述
    然后发现在文档种写的支持的上列模型,det模型能成功转换,而rec模型并不能成功转换
    请添加图片描述
    请添加图片描述
    请添加图片描述
    上面三张截图是ch-ppocr-mobile v2.O_rec,0 ch ppocr_server v2 .0rec,0 ch PP-OCRv2 rec的转换结果,可以看到都转换失败。
    在这里插入图片描述
    det模型转换成功

说明抛开其他因素,一些模型本身也是无法转换的

六.考虑其他办法

待续

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1292585.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 作业答疑

1. 哥德巴赫猜想 问题描述: 2000以内的不小于4的正偶数都能够分解为两个素数之和(即验证歌德巴赫猜想对2000以内的正偶数成立)。 问题分析: 根据问题描述,为了验证歌德巴赫猜想对2000以内的正偶数都是成立的&#…

html+css+js 三亚旅游网页设计与制作实例(6个页面)

一、作品介绍 HTMLCSSJS网页设计与制作,三亚旅游网页设计与制作实例, 本实例适合于初学HTMLCSSJS的同学。该案例里面有divcss的样式布局设置,这个实例比较全面,有一级页、二级页、详情页、输入表单等,共6个页面。本文…

(Gemini)双子座:一系列高能力多模态模型的前世今生

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

推荐一个开源的监控程序-Uptime

先放几张截图介绍一下 现场演示 尝试一下! 东京演示服务器:https://demo.uptime.kuma.pet(由 Uptime Kuma 赞助商 赞助) 这是一个临时的现场演示,所有数据将在10分钟后删除。使用距离您较近的一个,但我建…

《使用ThinkPHP6开发项目》 - 安装ThinkPHP框架

1.安装ThinkPHP6框架 这里我们使用的是composer安装的安装方式,请确保电脑已经安装了composer,如未安装可查看Composer 安装与使用 | 菜鸟教程 composer create-project topthink/think tp 上面命令安装的是稳定版的,也是最新的稳定版&…

Pygame游戏实战七:求解迷宫

介绍模块 本游戏使用的是由Pycharm中的pygame模块来实现的,也可以在python中运行。通过Pygame制作一个迷宫,迷宫可以自定义,出入口,通过移动来逃离迷宫,走到出口,看看这个是你小时候玩的游戏吗&#xff1f…

FFA 2023 明日开幕,Flink 智能诊断、小红书流批一体实践精彩来袭

近年来,流批一体的技术思想势头火热,即“将批处理和流处理相结合,实现更好的数据处理能力”,已成功从理论层面走进现实世界。Flink 是一款高吞吐量、低延迟的流处理引擎,具备统一接口、高性能、低延迟、容错性和可扩展…

软著项目推荐 深度学习验证码识别 - 机器视觉 python opencv

文章目录 0 前言1 项目简介2 验证码识别步骤2.1 灰度处理&二值化2.2 去除边框2.3 图像降噪2.4 字符切割2.5 识别 3 基于tensorflow的验证码识别3.1 数据集3.2 基于tf的神经网络训练代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 &#x…

@德人合科技 | 数据透明加密防泄密系统\文件文档加密\设计图纸加密|源代码加密防泄密软件系统,——防止内部办公终端核心文件数据/资料外泄!

一款专业的数据防泄密管理系统,它采用了多种加密模式,包括透明加密、半透明加密和落地加密等,可以有效地保护企业的核心数据安全。 PC端访问地址: https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee …

AWR1642 boost开发板支持的TI参考设计

打开radar_toolbox_1_30_00_05\source\ti\examples\examples_overview,通过输入“1642”查找AWR1642 BOOST支持的参考设计,通过筛选,支持AWR1642 BOOST的参考设计如下: 挑选出两个参考设计上手,一个是“nonos_oob_16xx",不带OS;另一个是”short range radar“,比较…

单月创作15个10w+作品,内容创作迎来新浪潮

据11月16日腾讯发布的Q3财报显示,本季度视频号总播放量同比增长超过50%,原创内容播放量增长强劲,视频号作为微信生态内最具增长潜力的产品之一,已然成为腾讯营收新动力。 为帮助大家更好地洞察视频号平台的内容趋势及创作风向&…

矿山数字孪生-只需要这几步就能快速构建智慧矿山管理系统

在万物互联、智慧协同的技术浪潮下,矿山日常管理及运营中使用到的智慧化平台越来越丰富,而各个管理子系统间往往独立,相互为数据孤岛。智慧矿山管理平台就是将各个孤岛中的数据及功能汇集起来,形成统一的、联动的管理门户。 智慧…

负债127万美元的【后羿国际】申请1亿美元纳斯达克IPO上市

来源:猛兽财经 作者:猛兽财经 猛兽财经获悉,总部位于深圳的后羿国际(HOUYI DIGITAL INTERNET INDUSTRY TECHNOLOGY CO., LTD)近期已向美国证券交易委员会(SEC)提交招股书,申请在纳斯…

LabVIEW使用单板RIO开发远程监控电源信号

LabVIEW使用单板RIO开发远程监控电源信号 设计和构建用于智能电网的本地功耗分析系统,主要服务于领先的电力监控设备设计者和制造商。随着智能电网投资的增加,对于能够有效处理替代电源(如太阳能和风能)间歇性功率水平的技术需求…

Swift 中 User Defaults 的读取和写入

文章目录 前言介绍 User Defaults共享 User DefaultsUser Defaults 存储数据类型响应更改监控 User Defaults 更改覆盖User Defaults 设置考虑的替代方案Keychain 用于安全性用于跨平台的 CloudKit 结论 前言 User Defaults 是 Swift 应用程序存储在应用启动之间保持的首选项的…

如何在 PyQt 中实现异步数据库请求

需求 开发软件的时候不可避免要和数据库发生交互,但是有些 SQL 请求非常耗时,如果在主线程中发送请求,可能会造成界面卡顿。这篇博客将会介绍一种让数据库请求变得和前端的 ajax 请求一样简单,且不会阻塞界面的异步请求方法。 实…

kepler.gl部署在线说明文档

1 概述 1.1 介绍 1、Kepler.gl 是一个强大的开源地理空间分析工具,用于大规模数据集的可视化。它由 Uber 的数据可视化团队开发,并且是基于 Web 技术构建的。Kepler.gl 涉及到以下几个主要技术领域: WebGL: Kepler.gl 通过 WebGL 进行渲染…

jetbrains 新编辑器 Fleet 修改主题颜色

当前Fleet主题只有五种 分别是 1、Dark Purple 2、Fleet Dark 3、Fleet Light 4、Gray 5、Sync with OS 其实这几种都不太好看 对眼睛不友好 可以选择一个白色主题进行自定义编辑 由于参数太多我直接全局替换把白色White换成了Yellow 70 为啥是Yellow 70? 把…

推荐一个可以记录历史进价的进销存软件?

“我是卖数码产品的,数码产品价格变动是比较大的,每次采购时候我都会多家对比价格,再决定在哪个厂家进货。所以基本上我每次进价价格都不一样,但是之前的询价情况又很难一一单独记录,让我采购的时候很被动。” “准备…

C++初学教程三

目录 一、运算符 一、自增自减运算符 二、位运算符 三、关系运算符 注意事项 四、条件运算符 注意事项 五、逻辑运算符 注意事项: 六、逗号运算符 概述 注意事项: 七、小结 运算符优先级和结合性一览表 一、运算符 一、自增自减运算符 运…