【数据结构(七)】查找算法

news2024/11/26 8:30:28

文章目录

  • 查找算法介绍
  • 1. 线性查找算法
  • 2. 二分查找算法
    • 2.1. 思路分析
    • 2.2. 代码实现
    • 2.3. 功能拓展
  • 3. 插值查找算法
    • 3.1. 前言
    • 3.2. 相关概念
    • 3.3. 实例应用
  • 4. 斐波那契(黄金分割法)查找算法
    • 4.1. 斐波那契(黄金分割法)原理
    • 4.2. 实例应用


查找算法介绍

在 java 中,我们常用的查找有四种:
    ① 顺序(线性)查找
    ② 二分查找/折半查找
    ③ 插值查找
    ④ 斐波那契查找

1. 线性查找算法

问题:
    数组arr[] = {1, 9, 11, -1, 34, 89},使用线性查找方式,找出11所在的位置。

代码实现:

package search;

public class SeqSearch {
    public static void main(String[] args) {
        int arr[] = { 1, 9, 11, -1, 34, 89 };// 没有顺序的数组
        int index = seqSearch(arr, 11);

        if (index == -1) {
            System.out.println("没有找到");
        } else {
            System.out.println("找到了,下标为:" + index);
        }

    }

    /**
     * 这里实现的线性查找是找到一个满足条件的值,就返回
     * 
     * @param arr
     * @param value
     * @return
     */
    public static int seqSearch(int[] arr, int value) {
        // 线性查找是逐一比对,发现有相同的值,就返回下标
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] == value) {
                return i;
            }
        }
        return -1;
    }

}

运行结果:

在这里插入图片描述

2. 二分查找算法

问题:
    请对一个有序数组进行二分查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"。

2.1. 思路分析

二分查找的思路分析

  1. 首先,确定该数组的中间的下标: m i d = ( l e f t + r i g h t ) / 2 mid = (left + right) / 2 mid=(left+right)/2

  2. 然后让需要查找的数 findValarr[mid] 比较
    2.1. findVal > arr[mid],说明你要查找的数在mid 的右边, 因此需要递归的向右查找
    2.2. findVal < arr[mid],说明你要查找的数在mid 的左边, 因此需要递归的向左查找
    2.3. findVal == arr[mid],说明找到,就返回

  3. 什么时候需要结束递归:
    ①找到就结束递归
    ②递归完整个数组,仍然没有找到findVal,也需要结束递归 当 left > right 就需要退出

2.2. 代码实现

注意:使用二分查找的前提是 该数组是有序的

package search;

public class BinarySearch {
    public static void main(String[] args) {
        int arr[] = { 1, 8, 10, 89, 1000, 1234 };

        int resIndex = binarySearch(arr, 0, arr.length - 1, 1);

        System.out.println("resIndex= " + resIndex);
    }

    // 二分查找法
    /**
     * 
     * @param arr     数组
     * @param left    左边的索引
     * @param right   右边的索引
     * @param findVal 要查找的值
     * @return 如果找到就返回下标,如果没有找到就返回-1
     */
    public static int binarySearch(int[] arr, int left, int right, int findVal) {

        // 当left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return -1;
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) {// 向右递归
            return binarySearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) {
            return binarySearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }
    }

}

运行结果:

在这里插入图片描述

2.3. 功能拓展

问题:
    数组{1,8, 10, 89, 1000, 1000,1234}, 当一个有序数组中,有多个相同的数值时,如何将所有的数值都查找到,比如这里的 1000。

代码实现:

package search;

import java.util.ArrayList;
import java.util.List;

public class BinarySearch {
    public static void main(String[] args) {
        int arr[] = { 1, 8, 10, 89, 1000, 1000, 1234 };

        List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, 1000);
        
        System.out.println("resIndexList = " + resIndexList);
    }


    /*
     * 思路分析:
     * 1. 在找 mid 的索引值,不要马上返回
     * 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
     * 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
     * 4. 将 ArrayList 返回
     */
    public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {

        // 当left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return new ArrayList<Integer>();
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) {// 向右递归
            return binarySearch2(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) {
            return binarySearch2(arr, left, mid - 1, findVal);
        } else {
            /*
             * 思路分析:
             * 1. 在找 mid 的索引值,不要马上返回
             * 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
             * 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
             * 4. 将 ArrayList 返回
             */
            List<Integer> resIndexlist = new ArrayList<Integer>();
            // 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            int temp = mid - 1;
            while (true) {
                if (temp < 0 || arr[temp] != findVal) {// 退出
                    break;
                }
                // 否则,就将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp -= 1;// temp左移
            }
            resIndexlist.add(mid);

            // 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            temp = mid + 1;
            while (true) {
                if (temp > arr.length - 1 || arr[temp] != findVal) {// 退出
                    break;
                }
                // 否则,就将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp += 1;// temp左移
            }
            return resIndexlist;

        }
    }

}

运行结果:

在这里插入图片描述

3. 插值查找算法

3.1. 前言

二分查找算法存在查找效率较慢的情况,因为其中的mid是从中间开始取的。假如对数组{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }进行查找,查找 1 所在的位置,实现代码如下:

package search;

import java.util.ArrayList;
import java.util.List;

public class BinarySearch {
    public static void main(String[] args) {

        int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 };

        List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, 1);
        System.out.println("resIndexList = " + resIndexList);
    }


    /*
     * 思路分析:
     * 1. 在找 mid 的索引值,不要马上返回
     * 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
     * 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
     * 4. 将 ArrayList 返回
     */
    public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {

        System.out.println("调用了一次");

        // 当left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return new ArrayList<Integer>();
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) {// 向右递归
            return binarySearch2(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) {
            return binarySearch2(arr, left, mid - 1, findVal);
        } else {
            /*
             * 思路分析:
             * 1. 在找 mid 的索引值,不要马上返回
             * 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
             * 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
             * 4. 将 ArrayList 返回
             */
            List<Integer> resIndexlist = new ArrayList<Integer>();
            // 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            int temp = mid - 1;
            while (true) {
                if (temp < 0 || arr[temp] != findVal) {// 退出
                    break;
                }
                // 否则,就将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp -= 1;// temp左移
            }
            resIndexlist.add(mid);

            // 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            temp = mid + 1;
            while (true) {
                if (temp > arr.length - 1 || arr[temp] != findVal) {// 退出
                    break;
                }
                // 否则,就将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp += 1;// temp左移
            }
            return resIndexlist;

        }
    }

}

运行结果:

在这里插入图片描述

总共调用了4次才查找出1的索引值,效率较慢。通过插值查找可改善上述问题。

3.2. 相关概念

原理介绍:
    插值查找算法类似于二分查找,不同的是插值查找每次从自适应 mid 处开始查找。

mid的计算公式:
    对二分查找中的求 mid 索引的公式进行修改:
在这里插入图片描述

上图公式中:
① low 表示左边索引 left
② high 表示右边索引 right
③ key 就是前面二分查找中讲的 findVal(要查找的值)

即插值查找的 mid计算公式
m i d = l o w + ( h i g h − l o w ) k e y − a r r [ l o w ] a r r [ h i g h ] − a r r [ l o w ] \begin{aligned} &mid = low + (high-low)\frac{key-arr[low]}{arr[high]-arr[low]} \end{aligned} mid=low+(highlow)arr[high]arr[low]keyarr[low]
对应前面的代码公式,即:
m i d = l e f t + ( r i g h t – l e f t ) f i n d V a l – a r r [ l e f t ] a r r [ r i g h t ] – a r r [ l e f t ] \begin{aligned} &mid = left + (right – left)\frac{findVal – arr[left]}{arr[right] – arr[left]} \end{aligned} mid=left+(rightleft)arr[right]arr[left]findValarr[left]

举例说明:
    
    数组 arr = [1, 2, 3, …, 100]
    
①假如需要查找的值是 1
    (使用二分查找的话,需要多次递归,才能找到 1 的下标0)
    使用插值查找算法:
m i d = l e f t + ( r i g h t – l e f t ) f i n d V a l – a r r [ l e f t ] a r r [ r i g h t ] – a r r [ l e f t ] \begin{aligned}&mid = left + (right – left)\frac{findVal – arr[left]}{arr[right] – arr[left]}\end{aligned} mid=left+(rightleft)arr[right]arr[left]findValarr[left]
即:
m i d = 0 + ( 99 − 0 ) 1 − 1 100 − 1 = 0 + 99 ∗ 0 99 = 0     ( 直接定位到下标 0 ) \begin{aligned}&mid = 0+(99-0)\frac{1-1}{100-1} = 0 + 99 * \frac{0}{99} = 0\ \ \ (直接定位到下标0)\end{aligned} mid=0+(990)100111=0+99990=0   (直接定位到下标0)
②假如需要查找的值是 100
m i d = 0 + ( 99 − 0 ) 100 − 1 ( 100 − 1 = 0 + 99 ∗ 99 99 = 0 + 99 = 99     ( 直接定位到下标 99 ) \begin{aligned}&mid =0 + (99 - 0)\frac{100 - 1}{(100 - 1} = 0 + 99 * \frac{99}{99} = 0 + 99 = 99\ \ \ (直接定位到下标99)\end{aligned} mid=0+(990)(10011001=0+999999=0+99=99   (直接定位到下标99)

3.3. 实例应用

问题:
    对数组 arr = [1, 2, 3, …, 100] ,使用插值查找算法,找到 1 的索引值(下标)

代码实现:

package search;

import java.util.Arrays;

public class InsertValueSearch {
    public static void main(String[] args) {
        int[] arr = new int[100];

        for (int i = 0; i < 100; i++) {
            arr[i] = i + 1;
        }

        int index = insertValueSearch(arr, 0, arr.length - 1, 1);
        System.out.println("index = " + index);

        // System.out.println(Arrays.toString(arr));
    }

    // 编写插值查找算法
    // 说明:插值查找算法也要求数组是有序的
    /**
     * 
     * @param arr     数组
     * @param left    左边索引
     * @param right   右边索引
     * @param findVal 要查找的值
     * @return 如果找到,就返回对应的下标;如果没有找到,就返回-1
     */
    public static int insertValueSearch(int[] arr, int left, int right, int findVal) {

        System.out.println("查找了一次");
        // 注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要,否则得到的mid可能越界
        if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
            return -1;
        }

        // 求出 mid
        int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
        int midVal = arr[mid];

        if (findVal > midVal) {// 说明应该向右边递归
            return insertValueSearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) {// 说明应该向左递归
            return insertValueSearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }

    }

}

运行结果:

在这里插入图片描述

注意事项:

  1. 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找, 速度较快.
  2. 关键字分布不均匀的情况下,该方法不一定比折半(二分)查找要好

4. 斐波那契(黄金分割法)查找算法

    
    黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是 0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意想不到的效果。

    斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … … } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618。

4.1. 斐波那契(黄金分割法)原理

    斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid 不再是中间或插值得到,而是位于黄金分割点附近,即 m i d = l o w + F [ k − 1 ] − 1 mid=low+F[k-1]-1 mid=low+F[k1]1 F F F 代表斐波那契数列),如下图所示:

在这里插入图片描述

对 F(k-1)-1 的理解:

  1. 由斐波那契数列 F [ k ] = F [ k − 1 ] + F [ k − 2 ] F[k]=F[k-1]+F[k-2] F[k]=F[k1]+F[k2] 的性质,可以得到 ( F [ k ] − 1 ) = ( F [ k − 1 ] − 1 ) + ( F [ k − 2 ] − 1 ) + 1 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 (F[k]1)=(F[k1]1)+(F[k2]1)+1 。该式说明:只要顺序表的长度为 F[k]-1,则可以将该表分成长度为 F [ k − 1 ] − 1 F[k-1]-1 F[k1]1 F [ k − 2 ] − 1 F[k-2]-1 F[k2]1 的两段,即如上图所示。从而中间位置为 m i d = l o w + F [ k − 1 ] − 1 mid=low+F[k-1]-1 mid=low+F[k1]1
  2. 类似的,每一子段也可以用相同的方式分割
  3. 但顺序表长度 n n n 不一定刚好等于 F [ k ] − 1 F[k]-1 F[k]1,所以需要将原来的顺序表长度 n n n 增加至 F [ k ] − 1 F[k]-1 F[k]1。这里的 k k k 值只要能使得 F [ k ] − 1 F[k]-1 F[k]1 恰好大于或等于 n n n 即可,由以下代码得到,顺序表长度增加后,新增的位置(从 n + 1 n+1 n+1 F [ k ] − 1 F[k]-1 F[k]1 位置),都赋为 n n n 位置的值即可。

while(n>fib(k)-1)
  k++;

4.2. 实例应用

问题:
    请对一个有序数组进行斐波那契查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"(return = -1)。

代码实现:

package search;

import java.util.Arrays;

public class FibonacciSearch {

    public static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = { 1, 8, 10, 89, 1000, 1234 };

        System.out.println("index = " + fibSearch(arr, 89));
    }

    // 因为后面我们mid=low+F(k-1)-1,需要使用斐波那契数列,因此我们需要先获取到一个斐波那契数列
    // 非递归方法得到一个斐波那契数列
    public static int[] fib() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    // 编写斐波那契查找算法
    // 使用非递归的方式编写算法
    /**
     * 
     * @param a   数组
     * @param key 需要查找的关键字(值)
     * @return 返回对应的下标,如果没有,就返回-1
     */
    public static int fibSearch(int[] a, int key) {
        int low = 0;
        int high = a.length - 1;
        int k = 0;// 表示斐波那契分割数值的下标
        int mid = 0;// 存放mid值
        int f[] = fib();// 获取到斐波那契数列

        // 获取到斐波那契分割数值的下标
        while (high > f[k] - 1) {
            k++;
        }

        // 因为f[k]的值 可能大于a的长度,因此需要使用Arrays类,构造一个新的数组,并指向a[]
        // 不足的部分会使用0填充
        int[] temp = Arrays.copyOf(a, f[k]);
        // 实际上,需要使用a数组的最后的数填充temp
        // 举例:
        // temp = {1,8,10,89,1000,1234,0,0,0} --> {1,8,10,89,1000,1234,1234,1234,1234}
        for (int i = high + 1; i < temp.length; i++) {
            temp[i] = a[high];
        }

        // 使用while循环处理,找到key
        while (low <= high) {// 只要这个条件满足,就可以找
            mid = low + f[k - 1] - 1;
            if (key < temp[mid]) {// 继续向数组的前面查找(左边)
                high = mid - 1;
                // 为什么是k--?
                // 说明:
                // 1. 全部元素=前面的元素+后面的元素
                // 2. f[k] = f[k-1] + f[k-2]
                // 因为 前面有f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
                // 即 在f[k-1]的前面继续查找(k--)
                // 即 下次循环的 mid = f[k-1-1]-1
                k--;
            } else if (key > temp[mid]) {// 继续向数组的后面查找(右边)
                low = mid + 1;
                // 为什么是 k -= 2
                // 说明
                // 1. 全部元素=前面的元素+后面的元素
                // 2. f[k] = f[k-1] + f[k-2]
                // 因为 后面有f[k-2]个元素,所以可以继续拆分 f[k-2] = f[k-3] + f[k-4]
                // 即 在f[k-2]的后面继续查找(k-=2)
                // 即 下次循环的 mid = f[k-1-2]-1
                k -= 2;
            } else {// 找到
                // 需要确定,返回的是哪一个下标
                if (mid <= high) {
                    return mid;
                } else {
                    return high;
                }

            }
        }
        return -1;

    }

}

运行结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1287394.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Midjourney实战】| 新年礼盒元素设计

文章目录 1 初步提示词2 润色提示词3 提示词发散联想 这期实践任务&#xff0c;我们想去做一个新年礼盒的效果&#xff0c;最后我们想把不同元素拼在一起&#xff0c;方便后期进行新年的相关设计 1 初步提示词 提示词初步我们乍一想&#xff0c;肯定要包括主体元素礼盒 新年礼…

APOLLO自动驾驶技术沙龙:未来已来,共创智能交通新时代

在这次Apollo会议上&#xff0c;我深刻地感受到了人工智能自动驾驶技术领域的最新进展和未来趋势。作为一名从事软件开发工作的人员&#xff0c;我深感荣幸能够参加这次盛会。 前言 本次活动是百度Apollo社区工程师齐聚首钢Park&#xff0c;带来现场实操与技术分享。主要围绕Ap…

好用的挂耳式蓝牙耳机有哪些?四款好用高性价比的耳机推荐

随着生活节奏的加快&#xff0c;挂耳式蓝牙耳机真的是越来越不可或缺了&#xff0c;不管是坐地铁、步行还是运动&#xff0c;一副好用的挂耳式蓝牙耳机都能让你感觉自己像是生活里的主角。但市面上的选择实在是太多了&#xff0c;简直让人眼花缭乱&#xff0c;不过我找了四款真…

仓库管理系统【GUI/Swing+MySQL】(Java课设)

系统类型 Swing窗口类型Mysql数据库存储数据 使用范围 适合作为Java课设&#xff01;&#xff01;&#xff01; 部署环境 jdk1.8Mysql8.0Idea或eclipsejdbc 运行效果 本系统源码地址&#xff1a; 更多系统资源库地址&#xff1a;更多Java课设系统 更多系统运行效果展示…

很全面 影响无人机自动返航的因素总结

在无人机技术不断成熟的今天&#xff0c;自主返航技术成为保障飞行安全的一种重要工具。无人机在多种情况下能够智能判断&#xff0c;主动实施返航动作&#xff0c;为用户提供更加可靠的飞行保障。以下是一些常见的无人机自动返航场景&#xff0c;让我们深入了解这项技术背后的…

玩转数据8:数据质量管理与数据清洗的实践

引言 在当今数字化时代&#xff0c;数据质量管理和数据清洗对于企业和组织来说变得至关重要。随着大数据的快速增长和数据驱动决策的普及&#xff0c;确保数据的准确性、一致性和完整性成为保证业务成功的关键因素。本文将探讨数据质量管理和数据清洗的概念、目标以及其在Java…

U-Net网络模型改进(添加通道与空间注意力机制)---亲测有效,指标提升

U-Net网络模型&#xff08;注意力改进版本&#xff09; 这一段时间做项目用到了U-Net网络模型&#xff0c;但是原始的U-Net网络还有很大的改良空间&#xff0c;在卷积下采样的过程中加入了通道注意力和空间注意力 。 常规的U-net模型如下图&#xff1a; 红色箭头为可以添加的…

电表峰谷平是怎么分时间的?

电表的峰谷平时间是指电力公司根据电力需求的不同&#xff0c;将一天的时间划分为不同的时段&#xff0c;以此来确定不同时间段内的电费价格。这种不同时段对应不同电费价格的制度&#xff0c;旨在更好地平衡电力供需&#xff0c;促进能源的高效利用。 首先&#xff0c;我们来了…

记录一下Mac配置SpringBoot开发环境

由于很多项目喜欢使用传统的 Java 8 进行开发&#xff0c;而且 Java 8 的稳定性也是经过长久考验的&#xff0c;我们接下来就尝试一下&#xff0c;在一台新的 Mac 中配置 Java 环境&#xff0c;并且开始创建 SpringBoot 项目。 首先&#xff0c;去 Oracle 官网下载 java8 JDK …

springboot详解Mybatis-Plus中分页插件PaginationInterceptor标红

1.问题描述 在springboot项目中&#xff0c;类中引用PaginationInterceptor&#xff0c;标红&#xff0c;如下图所示&#xff1a; 2.问题分析 可能是因为pom.xml中的配置原因&#xff0c;导致不支持PaginationInterceptor 3.解决问题 更换版本后 更换后&#xff0c;记得Rel…

开发的客户收到样品表示质量不如原供应商如何应对

有小伙伴问&#xff0c;在开发客户的过程当中&#xff0c;给客户寄了样品&#xff0c;客户说他的样品没有原来供应商的好怎么办&#xff1f; 这个问题我们来想一下&#xff0c;客户既然愿意把地址给我们&#xff0c;愿意去接你的样品&#xff0c;说明什么&#xff1f;说明客户…

【剑指offer|图解|位运算】训练计划VI+撞色搭配

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;数据结构、剑指offer每日一练 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 一. ⛳️训练计划VI&#xff08;题目难度&#xff1a;中等&#xff09;1.1 题目1.2 示例1.3 …

2024年猫罐头排行榜前十名有哪些?分享2024年猫罐头排行榜前10名

很多人家里的哈基米是不是吃猫粮吃腻了&#xff0c;或者猫猫平时不喜欢喝水&#xff0c;又或者看猫猫太瘦了想入手几款猫罐头但是又愁于不会选择。而且现在猫罐头风这么大不知道选什么好~ 作为从业5年的宠物医生&#xff0c;给你说猫罐头行业内幕。我告诫大家&#xff0c;选择…

Python网络爬虫环境的安装指南

网络爬虫是一种自动化的网页数据抓取技术&#xff0c;广泛用于数据挖掘、信息搜集和互联网研究等领域。Python作为一种强大的编程语言&#xff0c;拥有丰富的库支持网络爬虫的开发。本文将为你详细介绍如何在你的计算机上安装Python网络爬虫环境。 一、安装python开发环境 进…

SIT75179B,5V 供电, 10Mbps,全双工差分芯片/全双工 RS485/RS422 收发器

SIT75179B 是一款 4.5V~5.5V 供电全双工差分芯片&#xff0c;可完全满足 TIA/EIA-485/422 标准要求 的收发器。 SIT75179B 包括一个驱动器和一个接收器&#xff0c;两者均可独立传输信号。 SIT75179B 具有 1/8 负 载&#xff0c;允许 256 个 SIT75179B 收发器并…

【AIGC】AI作图最全提示词prompt集合(收藏级)

目录 一、正向和负向提示词 二、作图参数 你好&#xff0c;我是giszz. AI做图真是太爽了&#xff0c;解放生产力&#xff0c;发展生产力。 但是&#xff0c;你是不是也总疑惑&#xff0c;为什么别人的图&#xff0c;表现力那么丰富呢&#xff0c;而且指哪打哪&#xff0c;要…

陀螺仪防抖术语

陀螺仪防抖术语 fov 视场角 drift 零偏   MotionFusion即运动传感器的融合补偿&#xff0c;对陀螺仪、加速度计等运动测量器件的数据 进行预处理&#xff0c;通过标定和补偿&#xff0c;为防抖提供校准后的陀螺仪数据 ratio 系数 gyro 陀螺仪 calibration 校准 标定 DIS&…

深度优先搜索LeetCode979. 在二叉树中分配硬币

给你一个有 n 个结点的二叉树的根结点 root &#xff0c;其中树中每个结点 node 都对应有 node.val 枚硬币。整棵树上一共有 n 枚硬币。 在一次移动中&#xff0c;我们可以选择两个相邻的结点&#xff0c;然后将一枚硬币从其中一个结点移动到另一个结点。移动可以是从父结点到…

游戏:火星孤征 - deliver us mars - 美图秀秀~~

今天水一篇&#xff0c;借着免费周下载了deliver us mars&#xff0c;玩下来截了好多图&#xff0c;就放这里了。 游戏没有难度&#xff0c;剧情也不难理解&#xff0c;美图到处都是&#xff0c;建模细节也是满满&#xff0c;值得一玩。 游戏中的 A.S.E是守卫飞行机器人&…

甘草书店:#7 2023年11月19日 星期日 波澜不惊的日子里稳步前行

前进&#xff0c;可以伴着惊涛骇浪&#xff0c;也可以波澜不惊。 几番沟通&#xff0c;多方协商之后&#xff0c;甘草书店硬装方案基本确定&#xff0c;近期开始施工。 书目选择方面也在逐步推进。 就像之前设想的&#xff0c;划分成企业经管和个人成长两大类的前提下&#…