【每日易题】Leetcode上Hard难度的动态规划题目——地下城游戏的实现

news2025/2/26 0:34:57

在这里插入图片描述

君兮_的个人主页

即使走的再远,也勿忘启程时的初心

C/C++ 游戏开发

Hello,米娜桑们,这里是君兮_,博主最近一直在钻研动态规划算法,最近在Leetcode上刷题的时候遇到一个Hard难度的动态规划题,今天就借此机会来给大家分享一下我对这个题目的一些看法和解题思路(放心,我是AC了的)

  • 好了废话不多说,开始我们今天的学习吧!!

地下城游戏

  • Leetcode上的原题链接在这里:地下城游戏

在这里插入图片描述

在这里插入图片描述

  • 好好好,一看题目里一大堆字还看不懂它到底什么意思,再看看上面标的hard难度,一大堆人相信和博主一样上来就准备先点击退出了,大家先不要捉急,我来带大家一步一步分析一下这个题目的意思

题目解析

在这里插入图片描述
(ps:这个在漫画里真是公主)

  • 我们的公主被抓住关在了最右下角,如图所示
    在这里插入图片描述
  • 接下来,我们的骑士要从图中位置出发,其中遇到恶魔(也就是格子里的值为负值)就需要与它们战斗会扣血,当遇到魔法球(图中为正值),就可以回血。此时,题目问我们,在初始位置时,骑士至少需要多少血(规定当在某个位置血量大于等于1即可通过否则失败)
  • 那么,通过题目的描述,结合之前我们学过的动态规划思想,你发现什么不一样了吗?作为Hard难度的题,想用常规的思维来解决肯定是不可能的,好了,接下来我带大家具体分析一下其中的算法原理吧

算法原理

1. 状态表示

  • 我们之前在动态规划的算法中说过,遇到动态规划问题时,一般的解决方式就是分两种情况:
    • (1) 选择某一个位置为终点结束,建立dp表,进行状态表示
    • 2)选择某一个位置为起点出发…
  • 按照常规思路,我们既然知道了公主的位置,那正常情况就是选择第一种情况来试着进行状态表示
  • 这道题如果我们照着这个思路定义成:从起点开始,到达[i, j] 位置的时候,所需的最低初始健康点数。
  • 那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后面的路径的影响。也就是从上往下的状态转移不能很好地解决问题。

这里是为什么呢?我们设想一下,假设此时我们骑士的血很少,下一格无论是朝下还是朝右都会遇到恶魔把我们骑士的血扣为负数,那此时这里的dp值合理吗?很显然是不合理的。因此我们出了考虑前面位置的情况,还要考虑后面路径的情况,岂不是太麻烦了?

  • 这个时候我们要换⼀种状态表示:从[i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,前面的路径不需要考虑,后续的最佳状态已经知晓,这样就极大的简化了我们分析的难度。

  • 综上所述,定义状态表示为:
    dp[i][j] 表示:从[i, j] 位置出发,到达终点时所需的最低初始健康点数


2 状态转移方程

  • 对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择(为了方便理解,设 dp[i][j] 的最终答案是 x):

  • i. ⾛到右边,然后⾛向终点

  • 那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。
    通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j]

  • ii. ⾛到下边,然后⾛向终点

  • 那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。
    通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j]

  • 综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:
    dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]

  • 但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可:
    dp[i][j] = max(1, dp[i][j])

什么意思呢?就是这里的[i,j]会给恢复一大口血,但是如果此时的dp[i,j]为负数的时候,说明此时这里要求的骑士的最低血量是0或者负数,这显然是不符合要求的,因此我们需要对这种特殊情况进行一下上述的这种处理

初始化

  • 可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
  • i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
  • ii. 「下标的映射关系」。

有关辅助节点的使用方法在上面链接的博客中讲过了,这里就不再详叙

  • 在本题中,由于我们要考虑后面路径对现在位置的影响,需要在dp表最后面添加一行,并且添加⼀列后,所有的值都先初始化为无穷大,然后让dp[m][n - 1] 或dp[m - 1][n] = 1 即可。

填表顺序

  • 根据「状态转移方程」,我们需要「从下往上填每一行」,「每一行从右往左填」。看了上面的算法分析这一点应该不难理解

返回值

  • 从题目中可知,我们的骑士是从左上角开始的,因此结合上述分析,我们需要返回的值为dp[0][0]

编写代码

class Solution {
public:
    int calculateMinimumHP(vector<vector<int>>& dungeon) {
        int m=dungeon.size();
        int n=dungeon[0].size();
        //建立dp表,以某个位置为开始建立状态转移方程
        vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));
        dp[m][n-1]=1;//考虑边界问题
        for(int i=m-1;i>=0;i--)
        {
            for(int j=n-1;j>=0;j--)
            {
            	//填表
                dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];
                dp[i][j]=max(1,dp[i][j]);
            }
        }
        //返回值
        return dp[0][0];

    }
};
  • 代码很简单,只有十几行,实际上难的是上面分析题目的过程以及对一些特殊情况的判断,代码这里相信如果你能看懂上述原理的分析,这点对你来说应该一点都不难。

总结

  • 好啦,我们今天的内容就先到这里啦!其实代码并不重要,能看懂背后隐藏的原理并且通过这个题目学会对应题目的分析才重要,因此如果你想真正学会的话,不妨自己从头试着理解一下算法原理再自己独立编写代码,这样我相信是最能提升自己有关动态规划题目的理解的。
  • 有任何的问题和对文章内容的疑惑欢迎在评论区中提出,当然也可以私信我,我会在第一时间回复的!!

新人博主创作不易,如果感觉文章内容对你有所帮助的话不妨三连一下再走呗。你们的支持就是我更新的动力!!!

**(可莉请求你们三连支持一下博主!!!点击下方评论点赞收藏帮帮可莉吧)**

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1285550.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python的requests库实现HTTPS

嘿&#xff0c;Python程序员们&#xff01;今天我们要来点刺激的——使用Python的requests库实现HTTPS请求&#xff01;是的&#xff0c;你没有听错&#xff0c;我们要一起迈入HTTPS的神秘世界&#xff01; 首先&#xff0c;我们来了解一下HTTPS是什么。HTTPS是HTTP Secure的缩…

cmd下查看python命令的用法

在cmd下&#xff0c;可以运行python --help或者py --help来查看python命令的用法。例如&#xff1a;

LeetCode [中等]全排列(回溯算法)

46. 全排列 - 力扣&#xff08;LeetCode&#xff09; 回溯法 采用试错的思想&#xff0c;它尝试分步的去解决一个问题。在分步解决问题的过程中&#xff0c;当它通过尝试发现现有的分步答案不能得到有效的正确的解答的时候&#xff0c;它将取消上一步甚至是上几步的计算&…

Qt应用开发(Quick篇)——布局类与布局模块

一、前言 实际 应用中&#xff0c;布局是常用的功能&#xff0c;布局最直观的就是提供空间使用率&#xff0c;改善空间的流动和模块之间的重叠&#xff0c;让界面更加的美观。 二、布局类Layout 2.1 介绍 将Layout类型的对象附加到布局的子元素上&#xff0c;提供有关该项的特…

有趣的代码——有故事背景的程序设计2

有趣的代码是很多的&#xff0c;所以接着上一篇&#xff0c;这一篇再和大家分享一些有故事背景的程序设计。 目录 1.百元买百鸡问题 2.哥德巴赫猜想 3.折半查找 4.主对角线元素之和 5.戈尼斯堡七桥问题 1.百元买百鸡问题 已知公鸡5元一只&#xff0c;母鸡3元一只&#xf…

【代码随想录刷题】Day20 二叉树06

文章目录 1.【654】最大二叉树1.1 题目描述1.2 解题思路1.3 java代码实现1.4 总结 2.【617】合并二叉树2.1 题目描述2.2 解题思路2.3 java代码实现 3.【700】二叉搜索树中的搜索3.1 题目描述3.2 解题思路3.3 java代码实现 4.【98】验证二叉搜索树4.1 题目描述4.2 解题思路4.3 j…

Hadoop学习笔记(HDP)-Part.02 核心组件原理

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

Python代码编译并生成Docker镜像

Python代码编译并生成Docker镜像 前言 实际python项目交付时往往有针对关键代码进行保护的需求&#xff0c;本文介绍了一种简单可行的方案&#xff1a;1. 在Linux系统上先将 .py 文件编译为 .so 文件&#xff0c;2. 将整个项目打包成Docker镜像&#xff08;解决 .so 文件的环…

Mars3d支持geoserver的rest服务类型数据渲染上图

需求&#xff1a;geoserver的rest服务类型的矢量数据通过mars3d的引擎直接渲染上图 学习过程&#xff1a; 1.通过全局查询示例的map.js文件&#xff0c;可以看到示例调用的rest服务类型&#xff0c;发现很多wfs接口的数据直接上图渲染矢量数据以及query接口下面调用这个服务的…

python-单词本|通讯录

编写程序&#xff0c;生词本。 def sayHello():print("" * 20 \n 欢迎使用生词本\n 1.查看生词本\n 2.背单词\n 3.添加新单词\n 4.删除单词\n 5.清空生词本\n 6.退出生词本\n * 20 \n)def addW(data):word input("请输入新单词&#xff1a;")trans i…

成为Java开发高手:掌握Spring框架的关键技能-DI

DI相关内容 1.1 setter注入1.1.2 注入引用数据类型1.1.3 注入简单数据类型步骤1:声明属性并提供setter方法步骤2:配置文件中进行注入配置步骤3:运行程序 1.2 构造器注入1.2.2 构造器注入引用数据类型步骤1:删除setter方法并提供构造方法步骤2:配置文件中进行配置构造方式注入步…

docker搭建xxl-job

使用docker-compose创建并运行xxl-job 查看、下载镜像 docker search xxl-job # 结果&#xff0c;自己指定版本 xuxueli/xxl-job-admin:2.3.1创建文件夹 /usr/local/software/xxl-job/logs编排docker-compose文件 version: 2 networks:wn_docker_net:external: true servic…

阿里云服务器租赁价格表,预算100元到5000元可选配置

阿里云服务器租用费用&#xff0c;阿里云轻量应用服务器2核2G3M带宽轻量服务器一年87元&#xff0c;2核4G4M带宽轻量服务器一年165元12个月&#xff0c;ECS云服务器e系列2核2G配置3M固定带宽99元一年、2核4G配置365元一年、2核8G配置522元一年&#xff0c;阿里云u1服务器2核4G、…

Hadoop学习笔记(HDP)-Part.10 创建集群

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

如何通过DB操作地理空间数据

从公众号转载&#xff0c;关注微信公众号掌握更多技术动态 --------------------------------------------------------------- 一、PostgreSQL PostgreSQL是一个强大的对象关系数据库管理系统&#xff08;ORDBMS&#xff09;。它是在BSD风格的许可下发布的&#xff0c;因此是自…

2023年【危险化学品经营单位安全管理人员】免费试题及危险化学品经营单位安全管理人员复审考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 危险化学品经营单位安全管理人员免费试题是安全生产模拟考试一点通生成的&#xff0c;危险化学品经营单位安全管理人员证模拟考试题库是根据危险化学品经营单位安全管理人员最新版教材汇编出危险化学品经营单位安全管…

07、pytest指定要运行哪些用例

官方用例 # 目录结构 | |----test_mod.py | |----testing||----test_dir.py# content of test_mod.py import pytestdef func(x):return x 1def test_mod():print("test_mod function was invoked")assert func(3) 5def test_func():print("test_func was in…

Cyanine7-NHS ester荧光染料的化学结构、光谱性质和荧光特性

Cyanine7-NHS ester的结构包括一个靛菁环结构和一个NHS ester活性基团。NHS ester官能团是一种活化基团&#xff0c;用于将染料共价结合到含有游离氨基官能团的生物分子上。 **光谱性质&#xff1a;**Cyanine7-NHS ester的光谱性质通常包括&#xff1a; **激发波长&#xff08…

Hadoop学习笔记(HDP)-Part.16 安装HBase

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

大佬齐聚首钢园,会碰撞出什么火花-百度APOLLO线下沙龙

陈老老老板&#x1f9d9;‍♂️ &#x1f46e;‍♂️本文专栏&#xff1a;生活&#xff08;主要讲一下自己生活相关的内容&#xff09; &#x1f934;本文简述&#xff1a;生活就像海洋,只有意志坚强的人,才能到达彼岸 &#x1f473;‍♂️上一篇文章&#xff1a; 年度总结-你觉…