【深度学习】回归模型相关重要知识点总结

news2024/11/15 8:32:08

回归分析为许多机器学习算法提供了坚实的基础。在这篇文章中,我们将总结 10 个重要的回归问题和5个重要的回归问题的评价指标。

一、线性回归的假设是什么

线性回归有四个假设:

  • 线性:自变量(x)和因变量(y)之间应该存在线性关系,这意味着x值的变化也应该在相同方向上改变y值。
  • 独立性:特征应该相互独立,这意味着最小的多重共线性。
  • 正态性:残差应该是正态分布的。
  • 同方差性:回归线周围数据点的方差对于所有值应该相同。

二、什么是残差,它如何用于评估回归模型

残差是指预测值与观测值之间的误差。它测量数据点与回归线的距离。它是通过从观察值中减去预测值的计算机。

残差图是评估回归模型的好方法。它是一个图表,在垂直轴上显示所有残差,在 x 轴上显示特征。如果数据点随机散布在没有图案的线上,那么线性回归模型非常适合数据,否则我们应该使用非线性模型。

三、如何区分线性回归模型和非线性回归模型

两者都是回归问题的类型。两者的区别在于他们训练的数据。

线性回归模型假设特征和标签之间存在线性关系,这意味着如果我们获取所有数据点并将它们绘制成线性(直线)线应该适合数据。

非线性回归模型假设变量之间没有线性关系。非线性(曲线)线应该能够正确地分离和拟合数据。

找出数据是线性还是非线性的三种最佳方法:

  1. 残差图;
  2. 散点图;
  3. 假设数据是线性的,训练一个线性模型并通过准确率进行评估。

四、什么是多重共线性,它如何影响模型性能?

当某些特征彼此高度相关时,就会发生多重共线性。相关性是指表示一个变量如何受到另一个变量变化影响的度量。

如果特征 a 的增加导致特征 b 的增加,那么这两个特征是正相关的。如果 a 的增加导致特征 b 的减少,那么这两个特征是负相关的。在训练数据上有两个高度相关的变量会导致多重共线性,因为它的模型无法在数据中找到模式,从而导致模型性能不佳。所以在训练模型之前首先要尽量消除多重共线性。

五、异常值如何影响线性回归模型的性能?

异常值是值与数据点的平均值范围不同的数据点。换句话说,这些点与数据不同或在第 3 标准之外。

回归模型相关重要知识点总结-图片1

线性回归模型试图找到一条可以减少残差的最佳拟合线。如果数据包含异常值,则最佳拟合线将向异常值移动一点,从而增加错误率并得出具有非常高 MSE 的模型。

六、什么是 MSE 和 MAE 有什么区别?

MSE 代表均方误差,它是实际值和预测值之间的平方差。而 MAE 是目标值和预测值之间的绝对差。

MSE 会惩罚大错误,而 MAE 不会。随着 MSE 和 MAE 的值都降低,模型趋向于一条更好的拟合线。

七、L1 和 L2 正则化是什么,应该在什么时候使用?

在机器学习中,我们的主要目标是创建一个可以在训练和测试数据上表现更好的通用模型,但是在数据非常少的情况下,基本的线性回归模型往往会过度拟合,因此我们会使用 l1 和l2 正则化。

L1 正则化或 lasso 回归通过在成本函数内添加添加斜率的绝对值作为惩罚项。有助于通过删除斜率值小于阈值的所有数据点来去除异常值。

L2 正则化或ridge 回归增加了相当于系数大小平方的惩罚项。它会惩罚具有较高斜率值的特征。

l1 和 l2 在训练数据较少、方差高、预测特征大于观察值以及数据存在多重共线性的情况下都很有用。

八、异方差是什么意思?

它是指最佳拟合线周围的数据点的方差在一个范围内不一样的情况。它导致残差的不均匀分散。如果它存在于数据中,那么模型倾向于预测无效输出。检验异方差的最好方法之一是绘制残差图。

数据内部异方差的最大原因之一是范围特征之间的巨大差异。例如,如果我们有一个从 1 到 100000 的列,那么将值增加 10% 不会改变较低的值,但在较高的值时则会产生非常大的差异,从而产生很大的方差差异的数据点。

九、方差膨胀因子的作用是什么?

方差膨胀因子(vif)用于找出使用其他自变量可预测自变量的程度。

让我们以具有 v1、v2、v3、v4、v5 和 v6 特征的示例数据为例。现在,为了计算 v1 的 vif,将其视为一个预测变量,并尝试使用所有其他预测变量对其进行预测。

如果 VIF 的值很小,那么最好从数据中删除该变量。因为较小的值表示变量之间的高相关性。

十、逐步回归(stepwise regression)如何工作?

逐步回归是在假设检验的帮助下,通过移除或添加预测变量来创建回归模型的一种方法。它通过迭代检验每个自变量的显著性来预测因变量,并在每次迭代之后删除或添加一些特征。它运行n次,并试图找到最佳的参数组合,以预测因变量的观测值和预测值之间的误差最小。

它可以非常高效地管理大量数据,并解决高维问题。

十一、除了MSE 和 MAE 外回归还有什么重要的指标么?

回归模型相关重要知识点总结-图片2

我们用一个回归问题来介绍这些指标,我们的其中输入是工作经验,输出是薪水。下图显示了为预测薪水而绘制的线性回归线。

回归模型相关重要知识点总结-图片3

指标一:平均绝对误差(MAE)

回归模型相关重要知识点总结-图片4

平均绝对误差 (MAE) 是最简单的回归度量。它将每个实际值和预测值的差值相加,最后除以观察次数。为了使回归模型被认为是一个好的模型,MAE 应该尽可能小。

MAE的优点是:简单易懂。结果将具有与输出相同的单位。例如:如果输出列的单位是 LPA,那么如果 MAE 为 1.2,那么我们可以解释结果是 1.2LPA 或 -1.2LPA,MAE 对异常值相对稳定(与其他一些回归指标相比,MAE 受异常值的影响较小)。

 

MAE的缺点是:MAE使用的是模函数,但模函数不是在所有点处都可微的,所以很多情况下不能作为损失函数。

指标二:均方误差(MSE)

 

MSE取每个实际值和预测值之间的差值,然后将差值平方并将它们相加,最后除以观测数量。为了使回归模型被认为是一个好的模型,MSE 应该尽可能小。

MSE的优点:平方函数在所有点上都是可微的,因此它可以用作损失函数。

MSE的缺点:由于 MSE 使用平方函数,结果的单位是输出的平方。因此很难解释结果。由于它使用平方函数,如果数据中有异常值,则差值也会被平方,因此,MSE 对异常值不稳定。

指标三:均方根误差 (RMSE)

回归模型相关重要知识点总结-图片5

均方根误差(RMSE)取每个实际值和预测值之间的差值,然后将差值平方并将它们相加,最后除以观测数量。然后取结果的平方根。因此,RMSE 是 MSE 的平方根。为了使回归模型被认为是一个好的模型,RMSE 应该尽可能小。

RMSE 解决了 MSE 的问题,单位将与输出的单位相同,因为它取平方根,但仍然对异常值不那么稳定。

上述指标取决于我们正在解决的问题的上下文, 我们不能在不了解实际问题的情况下,只看 MAE、MSE 和 RMSE 的值来判断模型的好坏。

指标四:R2 score

回归模型相关重要知识点总结-图片6

如果我们没有任何输入数据,但是想知道他在这家公司能拿到多少薪水,那么我们能做的最好的事情就是给他们所有员工薪水的平均值。

回归模型相关重要知识点总结-图片7

R2 score 给出的值介于 0 到 1 之间,可以针对任何上下文进行解释。它可以理解为是拟合度的好坏。

SSR 是回归线的误差平方和,SSM 是均线误差的平方和。我们将回归线与平均线进行比较。

回归模型相关重要知识点总结-图片8

  • 如果 R2 得分为 0,则意味着我们的模型与平均线的结果是相同的,因此需要改进我们的模型。
  • 如果 R2 得分为 1,则等式的右侧部分变为 0,这只有在我们的模型适合每个数据点并且没有出现误差时才会发生。
  • 如果 R2 得分为负,则表示等式右侧大于 1,这可能发生在 SSR > SSM 时。这意味着我们的模型比平均线最差,也就是说我们的模型还不如取平均数进行预测。

如果我们模型的 R2 得分为 0.8,这意味着可以说模型能够解释 80% 的输出方差。也就是说,80%的工资变化可以用输入(工作年限)来解释,但剩下的20%是未知的。

如果我们的模型有2个特征,工作年限和面试分数,那么我们的模型能够使用这两个输入特征解释80%的工资变化。

R2的缺点:

随着输入特征数量的增加,R2会趋于相应的增加或者保持不变,但永远不会下降,即使输入特征对我们的模型不重要(例如,将面试当天的气温添加到我们的示例中,R2是不会下降的即使温度对输出不重要)。

指标五:Adjusted R2 score

上式中R2为R2,n为观测数(行),p为独立特征数。Adjusted R2解决了R2的问题。

当我们添加对我们的模型不那么重要的特性时,比如添加温度来预测工资…

回归模型相关重要知识点总结-图片9

当添加对模型很重要的特性时,比如添加面试分数来预测工资……

回归模型相关重要知识点总结-图片10

以上就是回归问题的重要知识点和解决回归问题使用的各种重要指标的介绍及其优缺点,希望对你有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1285015.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[STM32-1.点灯大师上线】

学习了江协科技的前4课,除了打开套件的第一秒是开心的,后面的时间都是在骂娘。因为51的基础已经几乎忘干净,c语言已经还给谭浩强,模电数电还有点底子,硬着头皮上吧。 本篇主要是讲述学习点灯的过程和疑惑解释。 1.工…

【杂】解决关于mean(0)理解错误引发的程序bug

一、环境和解释器要一起配置好 invalid syntax 发生你在终端激活了一个环境,但 VSCode 依然使用之前的解释器的情况。 解释器设置影响了 VSCode 中运行 Python 脚本、调试、代码补全等功能的行为。VSCode 会根据你选择的解释器来执行这些操作。 二、关于mean&#x…

在OSPF中使用基本ACL过滤路由信息示例

1、ACL的基本原理。 ACL由一系列规则组成,通过将报文与ACL规则进行匹配,设备可以过滤出特定的报文。设备支持软件ACL和硬件ACL两种实现方式。 2、ACL的组成。 ACL名称:通过名称来标识ACL,就像用域名代替IP地址一样,更…

2023-2024-1-高级语言程序设计-第2次月考函数题

6-1-1 调用函数求分段函数 编写函数fun计算下列分段函数的值&#xff1a; 。 函数接口定义&#xff1a; float fun(float x); 其中 x 是用户传入的参数。 函数须返回分段函数的计算结果。 裁判测试程序样例&#xff1a; #include <stdio.h> #include <math.h> …

06 数仓平台MaxWell

Maxwell简介 Maxwell是由Zendesk公司开源&#xff0c;用 Java 编写的MySQL变更数据抓取软件&#xff0c;能实时监控 MySQL数据库的CRUD操作将变更数据以 json 格式发送给 Kafka等平台。 Maxwell输出数据格式 Maxwell 原理 Maxwell工作原理是实时读取MySQL数据库的二进制日志…

Windows 10安装FFmpeg详细教程

Windows 10安装FFmpeg详细教程 0. 背景 在搭建之前的项目环境时&#xff0c;需要安装ffmpeg&#xff0c;在此记录下过程 1. 官网下载 点击进入官网&#xff1a;ffmpeg&#xff0c;官网地址&#xff1a;https://ffmpeg.org/download.html 如图所示&#xff0c;点击Windows图标…

【Windows】永久屏蔽系统更新

永久关闭电脑更新服务 操作思路&#xff1a; 第一步 winR 输入 services.msc 回车 进入服务管理窗口第二步 进入窗口后 找到 w 开头的文件夹 并找到Windows Update 双击打开 Windows Update 将启动类型&#xff08;E&#xff09; 改为禁用 上方的 “常规” “登录” “恢…

MATLAB学习QPSK之QPSK_MOD_DEMOD_SALIMup分析

学习的背景说明 因为在学习5G物理层&#xff0c;一直很忙&#xff0c;没有时间。最近稍有一点空闲&#xff0c;所以&#xff0c;学习一下算法。 QPSK的算法&#xff0c;虽然说我没有完全学透&#xff0c;大致还是懂的。只能一直没时间用MATLAB来研究一下。 然后看到这个实例&…

fastapi框架可以自动生成接口文档

安装FastAPI pip install fastapi test1.py from fastapi import FastAPIapp FastAPI()app.get("/") def read_root():return {"Hello": "World"}app.get("/items/{item_id}") def read_item(item_id: int, q: str None):#路由处理…

01-应用扩展和架构演进

文章目录 前言一、项目扩展二、架构演进总结 前言 随着项目从使用者范围到用户体积的不断扩大&#xff0c;最原始的单体项目已经无法很好地支撑现代项目所需的要求。因此&#xff0c;项目的架构也随之不断演进。本文将介绍架构的演进过程&#xff0c;初步了解微服务架构。 一…

<Linux>(极简关键、省时省力)《Linux操作系统原理分析之linux存储管理(3)》(19)

《Linux操作系统原理分析之linux存储管理&#xff08;3&#xff09;》&#xff08;19&#xff09; 6 Linux存储管理6.4 Linux 的分段和分页结构6.4.1Linux 的分段结构6.4.2 Linux 的三级分页结构6.4.3 内核页表和进程页表 6 Linux存储管理 6.4 Linux 的分段和分页结构 本节主…

【滑动窗口】LeetCode2953:统计完全子字符串

作者推荐 [二分查找]LeetCode2040:两个有序数组的第 K 小乘积 本题其它解法 【离散差分】LeetCode2953:统计完全子字符串 题目 给你一个字符串 word 和一个整数 k 。 如果 word 的一个子字符串 s 满足以下条件&#xff0c;我们称它是 完全字符串&#xff1a; s 中每个字符…

014 OpenCV canny边缘检测

一、环境 本文使用环境为&#xff1a; Windows10Python 3.9.17opencv-python 4.8.0.74 二、canny原理 OpenCV中的Canny边缘检测算法是一种基于图像处理的计算机视觉技术&#xff0c;主要用于检测图像中的边缘。Canny边缘检测算法的原理是通过计算图像中像素点之间的梯度值来…

导入JDBC元数据到Apache Atlas

前言 前期实现了导入MySQL元数据到Apache Atlas, 由于是初步版本&#xff0c;且功能参照Atlas Hive Hook&#xff0c;实现的不够完美 本期对功能进行改进&#xff0c;实现了导入多种关系型数据库元数据到Apache Atlas 数据库schema与catalog 按照SQL标准的解释&#xff0c;…

【Latex笔记】标题页

整体结构 模板结构如下&#xff1a; \documentclass{book} % 导言区&#xff0c;加载宏包和各项设置&#xff0c;包括参考文献、索引等 \usepackage{makeidx} % 调用makeidx 宏包&#xff0c;用来处理索引 \makeindex % 开启索引的收集 \bibliographystyle{plain} % 指定参考…

OpenCV-Python:图像卷积操作

目录 1.图像卷积定义 2.图像卷积实现步骤 3.卷积函数 4.卷积知识考点 5.代码操作及演示 1.图像卷积定义 图像卷积是图像处理中的一种常用操作&#xff0c;主要用于图像的平滑、锐化、边缘检测等任务。它可以通过滑动一个卷积核&#xff08;也称为滤波器&#xff09;在图像…

【C/PTA —— 14.结构体1(课内实践)】

C/PTA —— 14.结构体1&#xff08;课内实践&#xff09; 6-1 计算两个复数之积6-2 结构体数组中查找指定编号人员6-3 综合成绩6-4 结构体数组按总分排序 6-1 计算两个复数之积 struct complex multiply(struct complex x, struct complex y) {struct complex product;product.…

Shopify二次开发之三:liquid语法学习(Tags)

目录 Tags 变量声明 assign capture decrement increment 条件语句 if else unless case HTML form表单生成 style Iteration (遍历) for else break continue cycle paginate Theme &#xff08;主题&#xff09; render渲染一个snippet&#xff0c;可…

用友NC word.docx接口存在任意文件读取漏洞

声明 本文仅用于技术交流&#xff0c;请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任。 一、产品介绍 用友 NC Cloud&#xff0c;大型企业数字化平台&#xff…

MySQL笔记-第04章_运算符

视频链接&#xff1a;【MySQL数据库入门到大牛&#xff0c;mysql安装到优化&#xff0c;百科全书级&#xff0c;全网天花板】 文章目录 第04章_运算符1. 算术运算符2. 比较运算符3. 逻辑运算符4. 位运算符5. 运算符的优先级拓展&#xff1a;使用正则表达式查询 第04章_运算符 …