【C++ STL】vector类最全详解(什么是vector?vector类的常用接口有哪些?)

news2024/9/28 17:35:22

目录

一、前言

二、什么是vector ?

💦 vector的基本概念

💦vector的作用是什么

💦总结

三、 vector的(一维)定义

四、vector(一维)常用接口的使用

 💦vector的常见构造(初始化)

 💦vector的遍历及迭代器的操作

① operator[ ] 

② at ( ) 

③迭代器 

③ 范围for 

 💦vector的常见容量操作

① size

② capacity 

③ reserve(⭐)

④ resize(⭐)

⑤【reserve】和【resize】在使用中的易错点

⑥ empty

 💦vector的常见访问操作

 💦vector的常见修改操作

① push_back

② pop_back

③ insert

④ erase

⑤ swap

⑥ find

 五、共勉


一、前言

        最近在刷leetcode的时候,发现vector都还没弄明白吗,但是STL的强大是众所周知滴,早晚都是要解决滴,因此专门写下这篇文章,以供自己复习和各位老铁使用,快速的回忆vector的用法,让你找回自信,不用再竞赛的时候颜面尽失。
       本次博客主要讲解vector的一维用法,由于篇幅过长,vector的二维用法,下一篇博客来阐述,请大家持续关注我O!!

二、什么是vector ?

        向量(Vector)是一个封装了动态大小数组的顺序容器(Sequence Container)。跟任意其它类型容器一样,它能够存放各种类型的对象。可以简单的认为,向量是一个能够存放任意类型的动态数组。

💦 vector的基本概念

     Vector的数据安排以及操作方式,与array(数组)非常相似,两者的唯一差别在于空间的运用的灵活性。 

  • Array是静态空间,一旦配置了就不能改变,要换大一点或者小一点的空间,可以,一切琐碎得由自己来,首先配置一块新的空间,然后将旧空间的数据搬往新空间,再释放原来的空间。
  • Vector是动态空间,随着元素的加入,它的内部机制会自动扩充空间以容纳新元素。因此vector的运用对于内存的合理利用与运用的灵活性有很大的帮助,我们再也不必害怕空间不足而一开始就要求一个大块头的array(数组)了。

        Vector的实现技术,关键在于其对大小的控制以及重新配置时的数据移动效率,一旦vector旧空间满了,如果客户每新增一个元素,vector内部只是扩充一个元素的空间,实为不智,因为所谓的扩充空间(不论多大),一如刚所说,是”配置新空间-数据移动-释放旧空间”的大工程,时间成本很高,应该加入某种未雨绸缪的考虑,稍后我们便可以看到vector的空间配置策略。

 💦vector的作用是什么

        vector是C++标准模板库中的部分内容,中文偶尔译作“容器”,但并不准确。它是一个多功能的,能够操作多种数据结构和算法的模板类和函数库。vector之所以被认为是一个容器,是因为它能够像容器一样存放各种类型的对象,简单地说,vector是一个能够存放任意类型的动态数组,能够增加和压缩数据。

 💦总结

  1.  vector是表示可变大小数组的序列容器
  2. 就像数组一样vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好

三、 vector的(一维)定义

        单独定义一个vector

vector<typename> name;

        上面这个定义其实相当于是一维数组name[size],只不过其size可以根据需要进行变化,这就是“变长数组”的名字的由来。
        这里的typename可以是任何基本类型,例如int、double、char、结构体等,也可以是STL标准容器,例如string、set、queue、vector等。
        注意:使用前必须加上头文件:

代码展示:

#include <iostream>
#include <vector>
using namespace std;
int main()
{
	int a[3];   // 正常定义的----静态数组

	vector<int> str_a;   // vector定义的----动态数组

	char b[3];

	vector<char> str_b;

    return 0;
}

效果展示:

四、vector(一维)常用接口的使用

 💦vector的常见构造(初始化)

接口名称接口说明
vector ();(⭐)无参构造(构造一个没有元素的空容器,size = 0
vector (size_type n, const value_type& val = value_type());构造一个包含 n 个元素的容器,元素值为 val
vector (const vector& x); (⭐)拷贝构造
template <class InputIterator> vector (InputIterator first, InputIterator last);(函数模板)使用迭代器进行初始化构造 [first,last)

注意: ⭐表示重点掌握

方式一: 构造一个某类型的空容器

vector<数据类型> 函数名; 初始化为空。

vector<int> v1; //构造int类型的空容器

方式二: 构造一个含有n个val的某类型容器:

vector<数据类型> 函数名(a,b).定义a个空间,都初始化为b。

vector<int> v2(10, 2); //构造含有10个2的int类型容器

方式三: 拷贝构造某类型容器的复制品:
vector<数据类型> 函数名1(函数名2),把动态数据2复制给动态数组1

vector<int> v3(v2); //拷贝构造int类型的v2容器的复制品

方式四: 使用迭代器拷贝构造某一段内容:
vector<数据类型> 函数名1(函数名2.begin(),函数名2.end())把动态数组2复制给动态数组1。

vector<int> v4(v2.begin(), v2.end()); //使用迭代器拷贝构造v2容器的某一段内容

方式五:迭代器构造函数也可以使用数组来进行构造,传的区间是左闭右开

vector<数据类型> 函数名(a,a+sizeof(a)/sizeof(数据类型)),把普通数组a复制给动态数组。

注意:该方式也可用于拷贝其他容器的某一段内容。

string s("hello world");
vector<char> v5(s.begin(), s.end()); //拷贝构造string对象的某一段内容

代码展示1(实用):

#include <iostream>
#include <vector>
using namespace std;
int main()
{
    std::vector<int> first;                               // 构造一个没有元素的空容器
    std::vector<int> second(2, 10);                       // 2个值为10的整数
    std::vector<int> third(second.begin(), second.end()); // 迭代器构造
    std::vector<int> fourth(third);                       // 拷贝构造

    // 迭代器构造函数也可以使用数组来进行构造,传的区间是左闭右开
    // 因为指向数组空间的指针是天然的迭代器
    int arr[] = { 16,2,77,29 };
    std::vector<int> fifth(arr, arr + 4);
    // std::vector<int> fifth (arr, arr + sizeof(arr) / sizeof(int) );

    // first : []
    // second: [10,10]
    // third : [10,10]
    // fourth: [10,10]
    // fifth : [16,2,77,29]
    return 0;
}

效果展示:



代码展示2(不实用):

void test2()
{
	// 用其它容器的迭代器初始化,只要数据d类型可以匹配上
	string s("hello");
	vector<char> v(s.begin(), s.end());
	for (auto& e : v)
	{
		cout << e << " ";
	}
	cout << endl;
}

 💦vector的遍历及迭代器的操作

接口名称使用说明
operator[ ](

小标 + [ ]

at小标 + ( )
迭代器(begin()  + end()  或者  rbegin() + rend()
范围forC++11支持更简单的for的新遍历方式(底层还是借用迭代器实现)

注意: ⭐表示重点掌握

① operator[ ] 

       首先对于访问元素来说的话,最常见的还是 下标 + [ ] 的形式


代码展示

#include <iostream>
#include <vector>
using namespace std;

int main()
{
	vector<int> v(5, 1);
	//使用“下标+[]”的方式遍历容器
	for (size_t i = 0; i < v.size(); i++)
	{
		cout << v[i] << " ";
	}
	cout << endl;
	return 0;
}

效果展示:

② at ( ) 

  • 我们可以看到,使用at(下标)也是可以访问到对应元素的
  • 虽然这个接口并不是很常用,但是呢读者可以了解一下

代码展示:

int main()
{
	vector<int> v(5, 1);
	//使用“下标+()”的方式遍历容器
	for (size_t i = 0; i < v.size(); i++)
	{
		cout << v.at(i) << " ";
	}
	cout << endl;
	return 0;
}

效果展示:

③迭代器 

接口名称使用说明
begin()返回指向第一个元素的迭代器
end()返回指向最后一个元素的下一个位置的迭代器
rbegin()返回指向最后一个元素的反向迭代器
rend()返回指向第一个元素的前一个位置的反向迭代器

 begin和end

  • 通过begin函数可以得到容器中第一个元素的正向迭代器,通过end函数可以得到容器中最后一个元素的后一个位置的正向迭代器。

正向迭代器遍历容器:

#include <iostream>
#include <vector>
using namespace std;

int main()
{
	vector<int> v(10, 2);
	//正向迭代器遍历容器
	vector<int>::iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		it++;
	}
	cout << endl;
	return 0;
}

rbegin和rend

  • 通过rbegin函数可以得到容器中最后一个元素的反向迭代器,通过rend函数可以得到容器中第一个元素的前一个位置的反向迭代器。

反向迭代器遍历容器:

#include <iostream>
#include <vector>
using namespace std;

int main()
{
	vector<int> v(10, 2);
	//反向迭代器遍历容器
	vector<int>::reverse_iterator rit = v.rbegin();
	while (rit != v.rend())
	{
		cout << *rit << " ";
		rit++;
	}
	cout << endl;
	return 0;
}

③ 范围for 

如果支持迭代器的话,一定支持范围for

  • 马上来看看吧
int main()
{
	vector<int> v(2, 10);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;
	return 0;
}

 💦vector的常见容量操作

容量空间接口说明
size返回容器中有效元素个数
capacity返回分配的存储容量大小(即有效元素的最大容量)
resize(调整容器的有效元素大小(size)
reserve(调整容器的容量大小(capacity)
empty判断容器是否为空

注意: ⭐表示重点掌握

① size

  • 首先的话来讲讲size(),其表示为当前容器中的数据个数
void test_vector6()
{
	vector<int> v(10, 1);
	cout << v.size() << endl;
}
  • 我们来看到这个执行结果,初始化时我们为容器中放入了10个1,那么其size即为10

② capacity 

  • 对于【capacity】来说,就是容量大小,这里可以看到其与capacity是一同增长的,也为10


  • 下面我们来看一下【vector】的默认扩容机制

下面是我们的测试代码

// 测试vector的默认扩容机制
void TestVectorExpand()
{
	size_t sz;
	vector<int> v;
	sz = v.capacity();
	cout << "making v grow:\n";
	for (int i = 0; i < 100; ++i)
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}
  • 通过运行结果我们可以发现,在VS下的扩容机制是呈现 1.5 进行增长的,其STL是【P.J.版本】

  • 但是呢,在 Linux 下却始终是呈现的一个2倍的扩容机制,其STL是【SGI版本】

 ③ reserve(

  • 首先的话是【reserve】,它的主要功能是 开空间,避免频繁扩容

测试代码如下:

void TestVectorExpandOP()
{
	vector<int> v;
	size_t sz = v.capacity();
	v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
	cout << "making bar grow:\n";
	for (int i = 0; i < 100; ++i)
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

④ resize

  • 【resize】的功能则是 开空间 + 初始化,并且填上默认值
  • 这一块我们要通过调试来进行观察,首先看到没有resize的样子

  • 然后我们传递一个值进去看看,看到调试窗口中的size发生了变化,而且新增了3个为0的数据值
v.resize(3);

 ⑤【reserve】和【resize】在使用中的易错点

  • 接下去请读者观察一下下面这段代码,然后看看其中有什么问题?
void test_vector8()
{
    vector<int> v1;
    v1.reserve(10);		
    for (size_t i = 0; i < 10; i++)
    {
        v1[i] = i;	
    }
}
  • 然后我将程序运行起来,发现报出了错误❌


💬 有同学说:感觉这代码也没什么错呀?怎么会有错误呢?

  •  大家要关注前面的reserve(10),我们在上面说到对于【reserve】而言只是做的扩容而已,只变化capacity而不会变化size
  • 另一点,对于v1[i]我们上面在讲元素访问的时候有说到过,这是下标 + []的访问形式,在出现问题的时候会直接给出断言错误。因为这里我们在【reserve】的时候只是开出了指定的空间,但size还是为0,此时去访问的时候肯定就出错了


正确的改进方法应该是像下面这样的:

  • 如果我们要使用下标 + [] 的形式去访问元素的话,就需要开出合适的size大小,才能在访问的时候不会造成越界问题
vector<int> v2;
v2.resize(10);
for (size_t i = 0; i < 10; i++)
{
    v2[i] = i;
}
  • 我们通过调试来观察一下吧

  • 或者呢,我们也可以写成下面这种形式。如果有同学还是要使用【reserve】的话就不要使用下标 + [] 的形式了,而是使用【push_back】的方式去不断尾插数据,因为在不断尾插的过程中就会去做一个扩容,这一点马上就会讲到
  • 同样,我们通过调试来看看

⑥ empty

  • 再来看看【empty】接口,当一开始进在初始化后是为空,但是在插入数据后就不为空了

  • 当size为 0 时,返回 1 
  • 当size为 非0 时,返回 0

 💦vector的常见访问操作

接口名称接口说明
back返回容器中最后的一个元素的引用
front返回容器中第一个元素的引用

代码测试:

int main()
{
	int a[5] = { 1,2,3,4,5 };
	vector<int> v(a, a+5);
	
	cout << v.back() << endl;

	cout << v.front() << endl;
	return 0;
}

 效果展示:

 💦vector的常见修改操作

接口名称接口说明
push_back(⭐)在末尾添加一个元素,有效元素个数加1

pop_back(⭐)

删除最后一个元素,有效元素个数减1
insert在指定迭代器位置的元素之前插入新元素来扩展容器
erase从容器中删除单个元素,或一系列元素(迭代器区间[first,last])
swap交换两个容器的内容
find查找(注意:这个是算法模块实现,不是vector的成员接口)

① push_back

这个接口的功能很明确,就是在尾部插入数据

代码测试:

int main()
{
	vector<int> v;
	for (int i = 0; i < 5; i++)
	{
		v.push_back(i);
	}
	for (auto ch : v)
	{
		cout << ch << " ";
	}
	cout << endl;
	return 0;
}

效果展示:

② pop_back

对于【pop_back】来说,很明显就是去尾删最后一个元素
 


代码测试:

int main()
{
	vector<int> v(5, 2);
	for (auto ch : v)
	{
		cout << ch << " ";
	}
	cout << endl;
	for (int i = 0; i < 5; i++)
	{
		v.pop_back();
	}
	for (auto ch : v)
	{
		cout << ch << " ";
	}

	cout << endl;
	return 0;
}

效果展示:

③ insert

        对于【insert】这个接口来说,重载的方法有很多,读者可以自己下去都试试看,我这里只讲解前两个常用的。

测试代码:

int main()
{
	int a[] = { 1,2,3,4,5 };
	vector<int> v(a, a + 5);
	// 在第一个位置插入一个 0
	v.insert(v.begin(), 0);
	for (auto ch : v)
	{
		cout << ch << " ";
	}
	cout << endl;

	// 在最后一个位置插入2个 6
	v.insert(v.end(), 2, 6);
	for (auto ch : v)
	{
		cout << ch << " ";
	}
	cout << endl;

	return 0;
}

效果展示:

④ erase

有插入,那一定有删除,我们来看看【erase】

  • 这里看到有两个重载形式,一个是传递迭代器,另一个则是传递迭代器区间

代码测试:

int main()
{
	vector<int> v;
	for (int i = 0; i < 6; i++)
	{
		v.push_back(i);
	}

	// 删除指定位置的元素
	v.erase(v.begin());
	for (auto ch : v)
	{
		cout << ch << " ";
	}
	cout << endl;

	// 删除指定区间的元素
	v.erase(v.begin(), v.begin() + 2);
	for (auto ch : v)
	{
		cout << ch << " ";
	}
	cout << endl;

	return 0;
}

效果展示:

⑤ swap

swap 函数介绍:用 x 的内容交换当前容器的内容,x 是同类型的另一个对象。两个容器大小可能不同。

iterator insert (iterator position, const value_type& val); // 插入单个元素
// 传值传参,形参改变不会影响实参


代码测试:

int main()
{
	vector<int> v1(5, 2);

	vector<int> v2(6, 3);

	swap(v1, v2);

	for (auto ch : v1)
	{
		cout << ch << " ";
	}
	cout << endl;
	return 0;
}

效果展示:

⑥ find

       其实对于这个接口而言,是封装在了 <algorithm> 这个头文件中,称作是一种算法

  • 我们一起来看看具体的文档是怎么说的

  • 有了它相助后,我们要去删除一个指定的数据就容易多了,传入指定的搜索区间和要查找的值,若是返回的迭代器位置没有到达末尾的话,代表找到了这个值,我们去删除这个迭代器即可

代码测试:

int main()
{
	int a[] = { 1,2,3,4,5,1,2,5,8,6 };
	vector<int> v(a, a + 10);

	vector<int>::iterator pos = find(v.begin(), v.end(), 9);
	if (pos != v.end())
	{
		v.erase(pos);
	}

	for (auto ch : v)
	{
		cout << ch << " ";
	}
	cout << endl;
	return 0;
}

效果展示:

 五、共勉

        以下就是我对【C++ STL】vector容器的理解,如果有不懂和发现问题的小伙伴,请在评论区说出来哦,同时我还会继续更新对C++STL库的理解,请持续关注我哦!!! 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1284080.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python + Appium框架原生代码实现App自动化测试

Step1&#xff1a;首先介绍下pythonappium的框架结构 如下截图所示 . (1)&#xff1a;apk目录主要放置待测app的apk资源&#xff1b; (2)&#xff1a;config目录主要放置配置文件信息&#xff0c;包含&#xff1a;数据库连接配置、UI自动化脚本中所需的页面元素信息及app启…

python pyaudio实时读取音频数据并展示波形图

python pyaudio实时读取音频数据并展示波形图 下面代码可以驱动电脑接受声音数据&#xff0c;并实时展示音波图&#xff1a; import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import pyaudio import wave import os import op…

基于ssm 传统文化资源库导览系统-计算机毕设 附源码 63347

ssm 传统文化资源库导览系统 目 录 摘 要 Abstract 第1章 前 言 1.1 研究背景 1.3 系统开发目标 第2章 系统开发环境 2.1 java技术 2.4 SSM框架 第3章 需求分析 3.1 需求分析 3.2 系统可行性分析 3.3 项目设计目标与原则 3.4 系统流程分析 第4章 架…

大学里面转专业介绍

目录 个人情况转专业过程中的经验分享转专业后的学习建议和心态调整转专业后的时间平衡 个人情况 信息科学与工程学院计算机科学与技术专业2019级本科生&#xff0c;曾从物理与微电子科学学院后转入信息科学与技术学院。学习成绩连续三年专业前10% 项目&#xff1a;爬虫项目、…

Shopee过期的折扣活动如何删除?Shopee促销商品如何下架?——站斧浏览器

商家们可以轻松删除虾皮过期活动以及下架促销商品&#xff0c;保持店铺的整洁和顾客的购物体验。那么shopee过期的折扣活动如何删除&#xff0c;shopee促销商品如何下架。 Shopee过期的折扣活动如何删除&#xff1f; 在删除虾皮过期活动时&#xff0c;商家们需要遵循以下步骤…

gitlab高级功能之mirroring - push mirroring(一)

今天给大家介绍一个gitlab很高级也是非常有用的功能 - gitlab的mirroring&#xff0c;你可以将仓库镜像到外部或从外部镜像仓库过来&#xff0c;从而可以实现分支、标签和提交的自动同步。 文章目录 1. mirroring的实现方式2. push mirroring2.1 简介2.2 说明 3. 配置推送镜像3…

行业分析:轻轨行业发展现状及市场投资前景

轻轨是城市轨道建设的一种重要形式&#xff0c;也是当今世界上发展最为迅猛的轨道交通形式。轻轨的机车重量和载客量要比一般列车小&#xff0c;因此叫做“轻轨”。 城市轻轨具有运量大、速度快、污染小、能耗少、准点运行、安全性高等优点。城市轻轨与地下铁道、城市铁路及其…

使用JDBC连接和操作数据库以及myBatis初级入门

JDBC简介和使用 java程序操作数据库的方式有很多种&#xff0c;下面列举一些市面上常用的方式&#xff1a; 从图片分析的知&#xff1a; MyBatis MyBatisPlus 这两个所占的比重比较大。都是用于简化JDBC开发的 JDBC&#xff1a;(Java DataBase Connectivity)&#xff0c;就…

Java开发中一些重要软件安装配置

Java技术栈中重要过程 1、JavaWeb1、开发工具VsCode的安装和使用2、Tomcat服务器3、nodejs的简介和安装4、Vite创建Vue3工程化项目ViteVue3项目的创建、启动、停止ViteVue3项目的目录结构 5、Maven安装和配置 1、JavaWeb 1、开发工具VsCode的安装和使用 1 安装过程 安装过程比…

WEB渗透—反序列化(十一)

Web渗透—反序列化 课程学习分享&#xff08;课程非本人制作&#xff0c;仅提供学习分享&#xff09; 靶场下载地址&#xff1a;GitHub - mcc0624/php_ser_Class: php反序列化靶场课程&#xff0c;基于课程制作的靶场 课程地址&#xff1a;PHP反序列化漏洞学习_哔哩哔_…

【C语言】深入理解C语言中的数学运算和类型转换

文章目录 引言取负运算的奥秘源码探索分析与解读 浮点数运算的精细差异源码分析 精度损失与隐式类型转换精度和除零运算探究float类型和double类型的精度各是多少&#xff08;即十进制有效位的位数&#xff09;&#xff1f;在你的机器上&#xff0c;“负数开方”是如何处理的&a…

pbootcms建站

pbootcms建站 一、下载pbootcms二、安装1、进入宝塔面在网站栏&#xff0c;新建站点&#xff0c;将该址里面文件全部清再将下载的pbootcms上传至该地址。 三、修改关联数据库1、在根目录下/config打开database.php照如下修改这里我使用mysqli数据库。修改并使用自已创建的数据库…

206 反转链表

解题思路可以有两种方法&#xff1a;递归 or 迭代。 \qquad 迭代&#xff1a;通过使用for循环遍历&#xff0c;完成目标。方法直观&#xff0c;容易理解。 \qquad 递归&#xff1a;通过函数调用其自身&#xff0c;完成目标。递归最复杂、最重要的部分就是递归函数的构建&#…

flask web开发学习之初识flask(三)

文章目录 一、flask扩展二、项目配置1. 直接配置2. 使用配置文件3. 使用环境变量4. 实例文件夹 三、flask命令四、模版和静态文件五、flask和mvc架构 一、flask扩展 flask扩展是指那些为Flask框架提供额外功能和特性的库。这些扩展通常遵循Flask的设计原则&#xff0c;易于集成…

电脑发生0x80070002错误,0x80070002错误代码怎么解决

电脑发生0x80070002错误代码是一个常见的问题&#xff0c;它通常与Windows更新或系统文件损坏有关。当你的电脑出现这个错误代码时&#xff0c;在使用电脑时可能会受到影响&#xff0c;因为这可能意味着系统无法正常更新或运行。几天的这篇文章将和大家聊聊0x80070002错误代码怎…

学习UnitTest框架,轻松打造无懈可击的代码!

一、什么是UnitTest&#xff1f; 1、介绍 unittest是Python自带的一个单元测试框架&#xff0c;它可以做单元测试&#xff0c;也能用于编写和运行重复的测试工作。 它给自动化测试用例开发和执行提供了丰富的断言方法&#xff0c;判断测试用例是否通过&#xff0c;并最终生成…

Shell数组函数:数组(一)

一、数组简介&#xff1a; 变量&#xff1a;用一个固定的字符串&#xff0c;代替一个不固定字符串。数组&#xff1a;用一个固定的字符串&#xff0c;代替多个不固定字符串。 二、类型 普通数组&#xff1a;只能使用整数作为数组索引关联数组&#xff1a;可以使用字符串作为…

Web前端 ---- 【vue】vue 组件传值(props、全局事件总线、消息的订阅与发布)

目录 前言 父子组件 父传子 子传父 全局事件总线 什么叫全局事件总线 如何创建全局事件总线 如何在组件上获取到这个全局vc对象 最常用的创建全局事件总线 兄弟组件 消息订阅与发布 安装 使用 爷孙组件 前言 在上篇文章我们介绍了父子组件之间的传值通信&#xff…

鸿蒙4.0开发笔记之ArkTS装饰器语法基础之发布者订阅者模式@Provide和@Consume(十三)

1、定义 在鸿蒙系统的官方语言ArkTS中&#xff0c;有一套类似于发布者和订阅的模式&#xff0c;使用Provide、Consume两个装饰器来实现。 Provide、Consume&#xff1a;Provide/Consume装饰的变量用于跨组件层级&#xff08;多层组件&#xff09;同步状态变量&#xff0c;可以…

【Altium designer 20】

Altium designer 20 1. Altium designer 201.1 原理图库1.1.1 上划岗 在字母前面加\在加字母1.1.2 自定义快捷键1.1.3 对齐1.1.4 在原有的电路图中使用封装1.1.5 利用excel创建IC类元件库1.1.6 现有原理图库分类以及调用1.1.7 现有原理图库中自动生成原理图库 1.2 绘制原理图1.…