1. 前序和中序遍历
**思路:我们每一次一定可以根据递归确定根节点是哪个,就是前序第一个数,然后找中序遍历这个点,看左子树有几个节点,右子树有几个节点,然后就可以根据节点个数,递归左子树和右子树,当且仅当left>right时结束,由于preorder和inorder对应的所以left>right只需要判断一个符不符合就行了。**8个位置的判断一定要仔细。借助hashmap确定中序遍历某个节点的位置。
class Solution {
Map<Integer,Integer> mp = new HashMap();
int n;
TreeNode PreMidTreeBuilder(int[] preorder,int[] inorder,
int preorder_left, int preorder_right, int inorder_left, int inorder_right){
if(preorder_left>preorder_right) return null;
TreeNode root = new TreeNode(0,null,null);
int rootNodeVal = preorder[preorder_left];
root.val = rootNodeVal;
//定位到中序遍历的位置
int inorderRoot = mp.get(rootNodeVal);
//可以根据坐标定下来左右子树的节点数量
int leftLength = inorderRoot-inorder_left;
int rightLength = inorder_right-inorderRoot;
root.left=
PreMidTreeBuilder(preorder,inorder,preorder_left+1,preorder_left+leftLength,
inorder_left,inorderRoot-1);
root.right=
PreMidTreeBuilder(preorder,inorder,preorder_left+leftLength+1,preorder_right,
inorderRoot+1,inorder_right);
return root;
}
public TreeNode buildTree(int[] preorder, int[] inorder) {
n = preorder.length;
for(int i=0;i<n;i++)
mp.put(inorder[i],i);
return PreMidTreeBuilder(preorder,inorder,0,n-1,0,n-1);
}
}
2. 中序和后序遍历
和前序+中序完全一样的思路,可以说所有这种题都是这个思路。
class Solution {
Map<Integer,Integer> map = new HashMap<>();
public TreeNode buildInPostTree(int[] inorder, int[] postorder,
int inorder_left,int inorder_right,int postorder_left,int postorder_right)
{
if(inorder_left>inorder_right)return null;
int val = postorder[postorder_right];
int inorder_root = map.get(val);
int nums_left_tree = inorder_root-inorder_left;
int nums_right_tree = inorder_right-inorder_root;
TreeNode root = new TreeNode(val,null,null);
root.left = buildInPostTree(inorder,postorder,inorder_left,inorder_left+nums_left_tree-1,
postorder_left,postorder_left+nums_left_tree-1);
root.right = buildInPostTree(inorder,postorder,inorder_root+1,inorder_right,
postorder_right-nums_right_tree,postorder_right-1);
return root;
}
public TreeNode buildTree(int[] inorder, int[] postorder) {
int n = inorder.length;
for(int i=0;i<n;i++)
map.put(inorder[i],i);
return buildInPostTree(inorder,postorder,0,n-1,0,n-1);
}
}