c语言-结构体

news2025/1/22 16:13:52

文章目录

    • 1. 结构体类型的声明
    • 2 . 结构体变量的创建和初始化
      • (1)结构体变量的创建和初始化
      • (2)结构的特殊声明
      • (3)结构的自引用
      • (4)typedef和结构体
    • 3 . 结构成员访问操作符
    • 4. 结构体传参
    • 5. 结构体内存对齐
      • (1)对齐规则
      • (2)为什么存在内存对齐?
      • (3)修改默认对齐数
    • 6. 结构体实现位段
      • (1)什么是位段
      • (2)位段的内存分配
      • (3)位段的跨平台问题


结构体:结构体里面是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量 如:int、char、double等等
结构体关键字:struct

1. 结构体类型的声明

struct tag    //     -类型名   ——>struct tag   相当于  int    
{
	//member - list;      -成员变量
};//variable - list;      -结构体类型变量命名


要描述一个学生的信息

struct S
{
	char name[20];//姓名
	char  Stu[20];//学号
	double grade; //成绩
	
}zhangsan;//结构体类型变量名

2 . 结构体变量的创建和初始化

(1)结构体变量的创建和初始化

这里有三种不同的创建和初始化
我们通过代码来看看:

struct S
{
	char name[20];//姓名
	char  Stu[20];//学号
	double grade; //成绩
	
}s1 = {"zhangsan","20231314",99.9};
//第一种(就是在创建结构体类型时创建变量)创建结构体变量和初始化

int main() {
	//第二种创建结构体变量和初始化-与第一种的区别就是作用域不同
	struct S s2 = {"lisi","2023520",99.8};
	//第三种创建结构体变量和初始化-与第二种区别就是可以选择先初始化哪一种
	struct S s3 = { .Stu = "2023521",.name = "wangwu",.grade = 99.6 };
	return 0;
}

(2)结构的特殊声明

在声明结构的时候,可以不完全的声明。
如:

//省略了类型名
struct 
{
	double d;
	char c;
	int i;
}x;//直接创建变量

那么我们来看看这种情况:

//省略了类型名
struct
{
	double d;
	char c;
	int i;
} *p,x;
//在上⾯代码的基础上,下⾯的代码合法吗?
p = &x;

编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用⼀次

(3)结构的自引用

如:我们来定义一个结构体,然后再在这个结构体中再定义一个该结构体变量
代码:

struct  S
{
	struct S s1;//自引用
	char c;
	int i;
};

.那么怎么样去计算该结构体大小捏?
是不是计算不了啊,所以这是设置是有问题

那么我们要怎么设置捏
我们可以通过指针的方式来实现

struct  S
{
	struct S *s1;//用指针
	char c;
	int i;
};

这样就可以通过地址来找到一样类型的结构体啦

(4)typedef和结构体

有时我们会用typedef来重命名结构体
那么如何用捏

//第一种
typedef struct
{
 int data;
 Node* next;
}Node;      
//这种是错误的用法
//因为Node是对前⾯的匿名结构体类型的重命名产⽣的,但是在匿名结构体内部提前使
//⽤Node类型来创建成员变量,这是不⾏的。


//第二种
typedef struct Node
{
 int data;
 struct Node* next;
}Node;
//这种才是正确的重命名

3 . 结构成员访问操作符

结构体成员访问符有两个 :分别是直接成员访问符 ** . **,和间接成员访问符 ->
如:

struct  S
{
	int i;
};
int main() {
	struct  S s1 = { 4 };
	struct  S* s = &s1;
	//s1是结构体变量 i是成员名  s是结构体指针变量  i是成员名
	printf("s1.=%d s->i=%d", s1.i, s->i);
	return 0;
}

我们来打印看看:

在这里插入图片描述

4. 结构体传参

和其他变量传参一样,结构体传参也是分为传值调用和传址调用
如:

struct  S
{
	int i;
};
//传值调用
void cc(struct  S s) {
	printf("s.i=%d\n", s.i);
}
//传址调用
void CC(struct  S* s) {
	printf("s->i=%d\n", s->i);//第一种可以直接用 ->直接调用数据
	printf("(*s).i=%d\n", (*s).i);//第二种就是可以先解引用再使用直接访问符
}
int main() {
	struct  S s1 = { 4 };
	cc(s1);
	CC(&s1);
	return 0;
}

运行结果:
在这里插入图片描述
那么传地址好呢还是传值好呢?
结构体传参的时候,要传结构体的地址
为什么呢
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。如果传递⼀个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

5. 结构体内存对齐

我们已经掌握了结构体的基本使用了。
现在我们深入讨论⼀个问题:计算结构体的大小
我们先来看一个题:

struct  S1
{
	char a;
	int i;
	char b;
};

struct  S2
{
	char a;
	char b;
	int i;
};

int main() {
	printf("struct  S1=%zd\n", sizeof(struct  S1));
	printf("struct  S2=%zd\n", sizeof(struct  S2));
	return 0;
}

运行结果:
在这里插入图片描述
哎,明明两个结构体的内容一样啊,为什么会出现不同的结果呢?
这就涉及到结构体存储的规则了,当内容一样时,顺序不一样,结构体的大小也会改变

(1)对齐规则

  1. 结构体的第⼀个成员对齐到和结构体变量起始位置偏移量为0的地址处
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对齐数 = 编译器默认的⼀个对齐数 与 该成员变量大小的较小值。
  • VS 中默认的值为 8
  • Linux中 gcc 没有默认对齐数,对⻬数就是成员自身的大小
  1. 结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的的整数倍。
  2. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最⼤对齐数(含嵌套结构体中成员的对齐数)的整数倍。

拿上面的题来画图演示一下吧
S1:
在这里插入图片描述
S2:
在这里插入图片描述
我们再来一道结构体嵌套的

struct  S1
{
	char a;
	int i;
	char b;
};


struct S4
{
 char c1;
 struct S1 s1;
 double d;
};
printf("%d\n", sizeof(struct S4));

运行结果:
在这里插入图片描述
图解:
在这里插入图片描述

(2)为什么存在内存对齐?

⼤部分的参考资料都是这样说的:

  1. 平台原因 (移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定 类型的数据,否则抛出硬件异常。
  2. 性能原因: 数据结构(尤其是栈)应该尽可能地在⾃然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要 作两次内存访问;而对齐的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以用⼀个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两 个8字节内存块中。
    总体来说:结构体的内存对齐是拿空间来换取时间的做法。 那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到: 让占用空间小的成员尽量集中在⼀起

在这里插入图片描述

(3)修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
 //输出的结果是什么?
 printf("%d\n", sizeof(struct S));
 return 0;
}

结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

6. 结构体实现位段

(1)什么是位段

位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
    选择其他类型。
  2. 位段的成员名后边有⼀个冒号和⼀个数字。

如:

struct A
{//后面数字的单位是比特
 int _a:2;
 int _b:5;
 int _c:10;
 int _d:30;
};

(2)位段的内存分配

1.位段的成员可以是 int unsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。

例:

struct S
{
 char a:3;
 char b:4;
 char c:5;
 char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4
}

图解:
在这里插入图片描述

(3)位段的跨平台问题

1.int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会 出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员比较大,无法容纳于第⼀个位段剩余的位时,是舍弃 剩余的位还是利用,这是不确定的。 总结: 跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

(4)位段使用的注意事项

位段的几个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位
置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入 放在一个变量中,然后赋值给位段的成员。

struct A
{int _a : 2;
 int _b : 5;
 int _c : 10;
 int _d : 30;
};
int main()
{
 struct A sa = {0};
 scanf("%d", &sa._b);//这是错误的
 
 //正确的⽰范
 int b = 0;
 scanf("%d", &b);
 sa._b = b;
 return 0}

以上就是我的分享了,如果有什么错误,欢迎在评论区留言。
最后,谢谢大家的观看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1279804.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring知识:探索Java开发的全新世界

文章目录 初识Spring什么是Spring框架Spring核心设计思想 Spring的核心特性什么是IOC容器&#xff1f;---控制反转(IoC)容器的基本概念什么是IOC Spring的另一个特性&#xff1a;DISpring特性&#xff1a;DL Spring的主要模块创建Spring项目创建maven项目添加spring依赖创建启动…

深度学习——第1章 深度学习的概念及神经网络的工作原理

1.1 序言——探索智能机器 千百年来&#xff0c;人类试图了解智能的机制&#xff0c;并将它复制到思维机器上。 人类从不满足于让机械或电子设备帮助做一些简单的任务&#xff0c;例如使用滑轮吊起沉重的岩石&#xff0c;使用计算器做算术。 人类希望计算机能够自动化执行更…

硬件基础:半导体和PN结

学模电之前&#xff0c;应该是已经学过基础电路的内容了。 那为什么还要学习模电呢&#xff1f; 因为电路分析中只是学了电路基础部分&#xff0c;主要涉及到的是无源器件&#xff0c;比如电阻电容电感&#xff1b;但是到了模电&#xff0c;就要开始学习有源器件了。 有源器件…

新手零基础学习彩铅画,彩铅快速入门教程合集

一、教程描述 画画是很美好的一件事情&#xff0c;你可以把你想到的&#xff0c;或者看到的都画下来&#xff0c;照相机可以拍下任何你看到的&#xff0c;但是你想到的任何事物&#xff0c;只能通过绘画的方式来表达。本套教程是非常不错的&#xff0c;彩铅的小视频教程&#…

C++ day49 买卖股票的最佳时机

题目1&#xff1a;121 买卖股票的最佳时机 题目链接&#xff1a;买卖股票的最佳时机 对题目的理解 prices[i]表示一支股票在第i天的价格&#xff0c;只能在某一天买入这支股票&#xff0c;并在之后的某一天卖出该股票&#xff0c;从而获得最大利润&#xff0c;返回该最大值&…

Windows利用MMDeploy部署OpenMMLab 模型并使用Python进行部署

目录 前言 一、准备工作 二、安装 MMDeploy 总结 前言 近期在用OpenMMLab构建模型&#xff0c;然后需要使用MMDeploy对模型进行部署。虽然官方文档提供了详细的说明&#xff0c;但是写的太繁琐了&#xff0c;而且在实际部署过程中&#xff0c;发现并不是所有步骤和内容都需要&…

C++ IO库

IO类 IO对象不能拷贝和赋值 iostream 表示形式的变化&#xff1a; 将100转换成二进制序列 然后格式化输出 x,y共用一块内存 输出的时候用不同的方式解析同一块内存 操作 格式化&#xff1a;内部表示转换为相应字节序列 缓存&#xff1a;要输出的内容放到缓存 编码转换&…

四、Zookeeper节点类型

目录 1、临时节点 2、永久节点 Znode有两种,分别为临时节点和永久节点。 节点的类型在创建时即被确定,并且不能改变。 1、临时节点 临时节点的生命周期依赖于创建它们的会话。一旦会话结束,临时节点将被自动删除,

Sailfish OS 移动操作系统

Jolla 是一家曾经致力于开发智能手机和平板电脑的公司&#xff0c;但是这些产品并没有取得成功。后来 Jolla 将重心转向了基于 Linux 的 Sailfish OS&#xff08;旗鱼&#xff09;&#xff0c;并将其应用于现有设备上。Sailfish OS 是由 Jolla 在 MeeGo 基础上开发的移动操作系…

百度查询界面自定义

文章目录 起因步骤 纯个人纪录 参考以下师傅链接 爱吃猫的鱼儿-浏览器设置夜间模式以及百度搜索结果单列居中 起因 发现百度查询结果都在左边&#xff0c;想着能不能居中&#xff0c;发现已经有前辈写了插件&#xff0c;遂安装使用&#xff0c;看下效果 步骤 安装插件暴力猴…

PTA结构体经典编程题

目录 第一题&#xff1a;计算平均成绩 第二题&#xff1a;平面向量加法 第三题&#xff1a;查找书籍 第四题&#xff1a;通讯录排序 第五题&#xff1a;计算职工工资 第一题&#xff1a;计算平均成绩 思路&#xff1a;看到一个学生的基本信息&#xff0c;所以定义一个结构…

力扣每日一题day24[150. 逆波兰表达式求值]

给你一个字符串数组 tokens &#xff0c;表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意&#xff1a; 有效的算符为 、-、* 和 / 。每个操作数&#xff08;运算对象&#xff09;都可以是一个整数或者另一个表达式。两个…

Unity中Shader指令优化

文章目录 前言解析一下不同运算、条件、函数所需的指令数1、常数基本运算2、变量基本运算3、条件语句、循环 和 函数 前言 上一篇文章中&#xff0c;我们解析了Shader解析后的代码。我们在这篇文章中来看怎么实现Shader指令优化 Unity中Shader指令优化&#xff08;编译后指令…

FL Studio2024水果编曲软件21.2.0中文版本下载更新

FL Studio2024是功能强大的音乐制作解决方案&#xff0c;使用旨在为用户提供一个友好完整的音乐创建环境&#xff0c;让您能够轻松创建、管理、编辑、混合具有专业品质的音乐&#xff0c;一切的一切都集中在一个软件中&#xff0c;只要您想&#xff0c;只要您需要&#xff0c;它…

汇编学习记录

前言 这篇文章是自己在专升本录取~本科开学前学习记录&#xff0c;破解软件的学习在2022年4月 - 2022年5月&#xff0c;汇编学习时间大约为2022年7月 - 2022年9月&#xff0c;我将往期上传的博文整理为一篇文章&#xff0c;作为归纳总结。 以后若继续学习相关领域&#xff0c;此…

vue3项目脚手架如何使用swiper, ‘vue-awesome-swiper‘报错解决(简单示例)

目录 前言 使用方法 效果图 1.下载swiper 2. 写入需要的页面 3.在对应页面引入组件 4.推荐页完整代码 前言 Vue3和Vue2在使用swiper时是有差别的&#xff0c;Vue3引入swiper需要注意Vu3的版本和swiper的版本&#xff0c;如果不匹配通常会报错 如下&#xff1a;当引用版本过…

Presto基础学习--学习笔记

1&#xff0c;Presto背景 2011年&#xff0c;FaceBook的数据仓库存储在少量大型hadoop/hdfs集群&#xff0c;在这之前&#xff0c;FaceBook的科学家和分析师一直靠hive进行数据分析&#xff0c;但hive使用MR作为底层计算框架&#xff0c;是专为批处理设计的&#xff0c;但是随…

Spingboot 之spring-boot-starter-parent与spring-boot-dependencies区分

在创建spring boot工程时&#xff0c;spring-boot-starter-parent 和 spring-boot-dependencies是二选一的关系&#xff0c;在pom中引入其中一个就可以了。 那么什么时候用spring-boot-starter-parent 和 spring-boot-dependencies呢&#xff1f;从字面名称上看&#xff0c;如…

从零开始,探索Spring框架的魅力与实践

Spring 1&#xff0c;介绍1.1 为什么要学?1.2 学什么? 2&#xff0c;Spring相关概念2.1 初识Spring2.1.1 Spring家族2.1.2 了解Spring发展史 2.2 Spring系统架构2.2.1 系统架构图2.2.2 spring主要内容 2.3 Spring核心概念2.3.1 目前项目中的问题2.3.2 IOC、IOC容器、Bean、DI…

美容院管理系统服务预约会员小程序效果如何

美容院在美业场景中需求度较高&#xff0c;尤其女性爱美悦己消费逐年增加&#xff0c;如清洁焕肤、祛皱抗衰、激光脱毛等美容项目都有不少需求者。 互联网深入美业行业多年&#xff0c;传统线下经营模式已经很难满足当今客户消费流程&#xff0c;如品牌寻找、服务预约、到店、…