使用visual Studio MFC 平台实现对灰度图添加椒盐噪声,并进行均值滤波与中值滤波

news2025/1/11 2:45:52

平滑处理–滤波

本文使用visual Studio MFC 平台实现对灰度图添加椒盐噪声,并进行均值滤波与中值滤波
关于其他MFC单文档工程可参考
01-Visual Studio 使用MFC 单文档工程绘制单一颜色直线和绘制渐变颜色的直线

02-visual Studio MFC 绘制单一颜色三角形、渐变颜色边框三角形、渐变填充三角形、边框渐变的正方形与填充渐变的正方形实例

文章目录

  • 平滑处理--滤波
    • 一、添加椒盐噪声
      • 1.1 添加椒盐噪声的原理
      • 1.2 添加椒盐噪声的代码实现
      • 1.3 添加椒盐噪声后的效果
    • 二、均值滤波
      • 2.1 均值滤波的原理
      • 2.2 均值滤波的代码实现
      • 2.3 均值滤波的实验效果
    • 三、 中值滤波
      • 3.1 中值滤波的原理
      • 3.2 中值滤波的C++实现
      • 3.3中值滤波后的效果图

一、添加椒盐噪声

1.1 添加椒盐噪声的原理

添加椒盐噪声是一种常见的图像噪声引入方式,其原理是在图像中随机选择一些像素点,并将这些像素点的灰度值设置为最大或最小值,通常是白色(最大值)或黑色(最小值)。这样的噪声模拟了图像中出现的随机强烈亮或暗的噪声点,类似于椒盐的颗粒,因此得名。

具体步骤如下:

  1. 选择噪声点: 在图像中随机选择一些像素点作为噪声点。

  2. 设定噪声值: 对于每个选定的噪声点,将其灰度值设定为最大值(白色)或最小值(黑色)。

这样就在图像中引入了椒盐噪声,这种噪声形式使图像中的某些区域变得非常亮或非常暗,从而增加了图像的复杂性和难度。

椒盐噪声主要用于模拟一些特殊环境下的图像问题,例如图像采集中的传感器错误、传输中的丢包等情况。在图像处理中,去除或减轻椒盐噪声的方法通常包括滤波技术,例如中值滤波。

1.2 添加椒盐噪声的代码实现

//添加椒盐噪声
void CMFCApplication1View::OnAddsaltpeppernoise()
{
 // TODO: 在此添加命令处理程序代码
 if (gray_data != nullptr) {
  // 获取绘图设备
  CClientDC dc(this);
  CDC* pDC = &dc;

  // 创建临时数组用于保存添加噪声后的数据
  noisy_data = new unsigned char[bmpWidth * bmpHeight];

  // 复制原始数据到临时数组
  std::copy(gray_data, gray_data + bmpWidth * bmpHeight, noisy_data);

  // 添加椒盐噪声
  srand(static_cast<unsigned int>(time(nullptr)));  // 初始化随机数种子
  const double saltPepperRatio = 0.01;  // 椒盐噪声比例

  for (int i = 0; i < bmpWidth * bmpHeight; ++i) {
   double randomValue = static_cast<double>(rand()) / RAND_MAX;
   if (randomValue < saltPepperRatio / 2) {
    noisy_data[i] = 0;  // 添加椒噪声
   }
   else if (randomValue < saltPepperRatio) {
    noisy_data[i] = 255;  // 添加盐噪声
   }
  }

  // 绘制带有椒盐噪声的图像
  m_pBmp->drawGrayBmp(pDC, noisy_data, bmpWidth, bmpHeight, offset_left+2*bmpWidth, offset_top + 3 * bmpHeight);

关于上面将原来灰度图的数据复制到新的数组noisy_data中的目的是为了保留添加椒盐噪声后的灰度图的数据,以便后面的平滑操作

1.3 添加椒盐噪声后的效果

在这里插入图片描述

二、均值滤波

2.1 均值滤波的原理

均值滤波是一种常见的图像平滑处理方法,其原理基于对图像的像素值进行平均运算。这种滤波方法主要用于去除图像中的噪声或细小的细节,以产生更平滑的图像。

具体步骤如下:

  1. 定义卷积核: 选择一个固定大小的卷积核,通常是一个正方形的矩阵。卷积核的大小取决于应用场景和对平滑度的需求。

  2. 卷积操作: 将卷积核应用于图像的每个像素。对于每个像素,将其与卷积核中对应位置的像素相乘,然后将所有乘积的和除以卷积核的总权重。这个和的结果就是卷积核中心像素的新值。

  3. 更新图像: 将卷积操作得到的新值赋予原始图像相应位置的像素,形成平滑后的图像。

均值滤波的效果在平滑图像的同时,会导致图像失真,特别是对边缘和细节的处理较为粗糙。这是因为平均操作会模糊图像,擦除图像中的高频信息。

公式表示如下,其中 M 为卷积核的大小,f(x, y) 为原始图像,h(i, j) 为卷积核中的权重:

g ( x , y ) = 1 M ∑ i = 1 M ∑ j = 1 M h ( i , j ) ⋅ f ( x + i , y + j ) g(x, y) = \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{M} h(i, j) \cdot f(x+i, y+j) g(x,y)=M1i=1Mj=1Mh(i,j)f(x+i,y+j)

其中,g(x, y)是滤波后的像素值。

2.2 均值滤波的代码实现

//均值滤波
void CMFCApplication1View::OnMeanfilter()
{
 // TODO: 在此添加命令处理程序代码
 if (noisy_data != nullptr) {
  // 获取绘图设备
  CClientDC dc(this);
  CDC* pDC = &dc;

  // 创建临时数组用于保存均值滤波后的数据
  unsigned char* filtered_data = new unsigned char[bmpWidth * bmpHeight];

  // 设置均值滤波的卷积核大小(3x3)
  const int kernelSize = 3;
  const int kernelHalfSize = kernelSize / 2;

  // 应用均值滤波
  for (int y = kernelHalfSize; y < bmpHeight - kernelHalfSize; ++y) {
   for (int x = kernelHalfSize; x < bmpWidth - kernelHalfSize; ++x) {
    int sum = 0;

    // 计算卷积核内的像素值之和
    for (int ky = -kernelHalfSize; ky <= kernelHalfSize; ++ky) {
     for (int kx = -kernelHalfSize; kx <= kernelHalfSize; ++kx) {
      int pixelValue = noisy_data[(y + ky) * bmpWidth + (x + kx)];
      sum += pixelValue;
     }
    }

    // 计算均值并赋值给滤波后的像素
    filtered_data[y * bmpWidth + x] = static_cast<unsigned char>(sum / (kernelSize * kernelSize));
   }
  }

  // 绘制均值滤波后的图像
  m_pBmp->drawGrayBmp(pDC, filtered_data, bmpWidth, bmpHeight, offset_left + 3 * bmpWidth, offset_top + 3 * bmpHeight);

  // 在图片下方添加文字
  GdiplusStartupInput gdiplusStartupInput;
  ULONG_PTR gdiplusToken;
  GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, nullptr);
  {
   Graphics graphics(pDC->m_hDC);
   Gdiplus::Font font(L"Arial", 12);
   SolidBrush brush(Color(255, 128, 0, 128));  // 文字颜色为紫色

   // 文字的位置
   PointF point(offset_left +3* bmpWidth, offset_top + 4 * bmpHeight);

   // 绘制文字
   graphics.DrawString(L"均值滤波后的图像", -1, &font, point, &brush);
  }

  // 释放临时变量的内存
  delete[] filtered_data;

  GdiplusShutdown(gdiplusToken);
 }
 else {
  // 处理图像未加载的情况
  AfxMessageBox(_T("未加载图片"));
 }
}

2.3 均值滤波的实验效果

在这里插入图片描述

三、 中值滤波

3.1 中值滤波的原理

中值滤波是一种非线性滤波方法,它的原理是用像素点邻域灰度值的中值来代替该像素点的灰度值。中值滤波不会改变图像的灰度平均值,但可以有效地去除图像中的椒盐噪声等离群点,对于保持图像边缘细节方面也有一定的优势。

中值滤波的步骤如下:

  1. 选择滤波模板大小: 中值滤波通常采用3×3、5×5等奇数大小的模板。选择模板的大小会影响滤波效果。

  2. 将模板覆盖在图像的每个像素点上: 以当前像素为中心,取模板中所有像素的灰度值。

  3. 对模板中的灰度值进行排序: 将模板中的灰度值按升序或降序排列。

  4. 取排序后的中值: 选取排序后的中间值作为当前像素的新灰度值。

  5. 重复该过程: 将模板在整个图像上滑动,对每个像素应用相同的操作。

中值滤波的优点在于能够有效地去除椒盐噪声,但在一些情况下可能会导致图像细节模糊。它特别适用于去除局部性较强的噪声。

3.2 中值滤波的C++实现

//中值滤波
void CMFCApplication1View::OnMedianfilter()
{
 // TODO: 在此添加命令处理程序代码
 if (noisy_data != nullptr) {
  // 获取绘图设备
  CClientDC dc(this);
  CDC* pDC = &dc;

  // 创建临时数组用于中值滤波处理
  unsigned char* median_filtered_data = new unsigned char[bmpWidth * bmpHeight];

  // 中值滤波的处理代码
  int filter_size = 3;  // 中值滤波的邻域大小,可以根据实际情况调整
  int filter_radius = filter_size / 2;

  for (int y = filter_radius; y < bmpHeight - filter_radius; ++y) {
   for (int x = filter_radius; x < bmpWidth - filter_radius; ++x) {
    // 获取邻域内的像素值
    std::vector<unsigned char> neighborhood;
    for (int j = -filter_radius; j <= filter_radius; ++j) {
     for (int i = -filter_radius; i <= filter_radius; ++i) {
      neighborhood.push_back(noisy_data[(y + j) * bmpWidth + (x + i)]);
     }
    }

    // 对邻域内的像素值进行排序
    std::sort(neighborhood.begin(), neighborhood.end());

    // 计算中值并赋值给当前像素
    median_filtered_data[y * bmpWidth + x] = neighborhood[filter_size * filter_size / 2];
   }
  }

  // 绘制中值滤波后的图像
  m_pBmp->drawGrayBmp(pDC, median_filtered_data, bmpWidth, bmpHeight, offset_left + 4 * bmpWidth, offset_top + 3 * bmpHeight);

  // 在图片下方添加文字
  GdiplusStartupInput gdiplusStartupInput;
  ULONG_PTR gdiplusToken;
  GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, nullptr);
  {
   Graphics graphics(pDC->m_hDC);
   Gdiplus::Font font(L"Arial", 12);
   SolidBrush brush(Color(255, 128, 0, 128));  // 文字颜色为紫色

   // 文字的位置
   PointF point(offset_left + 4 * bmpWidth, offset_top + 4 * bmpHeight);

   // 绘制文字
   graphics.DrawString(L"中值滤波", -1, &font, point, &brush);
  }

  // 释放临时数组的内存
  delete[] median_filtered_data;

  GdiplusShutdown(gdiplusToken);
 }
 else {
  // 处理图像未加载的情况
  AfxMessageBox(_T("未加载图片"));
 }
}

3.3中值滤波后的效果图

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1275036.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【openssl】Window系统如何编译openssl

本文主要记录如何编译出windows版本的openss的lib库 1.下载openssl&#xff0c;获得openssl-master.zip。 a.可以通过github&#xff08;网址在下方&#xff09;上下载最新的代码、今天是2023.12.1我用的master版本&#xff0c;下载之后恭喜大侠获得《openssl-master.zip》 …

iPhone苹果手机如何将词令网页添加到苹果iPhone手机桌面快捷打开?

iPhone苹果手机如何将词令网页添加到苹果iPhone手机桌面快捷打开&#xff1f; 1、在iPhone苹果手机上找到「Safari浏览器」,并点击打开&#xff1b; 2、打开Safari浏览器后&#xff0c;输入词令官方网站地址&#xff1a;ciling.cn ; 3、打开词令官网后&#xff0c;点击Safari…

特殊二叉树——堆

&#x1f308;一、堆的基本概念 1.堆&#xff1a;非线性结构&#xff0c;是完全二叉树 2.堆分为大堆和小堆。 大堆&#xff1a;树中任意一个父亲都大于等于孩子&#xff0c;根节点值大于等于其所有子孙节点的值。 小堆&#xff1a;树中任意一个父亲都小于等于孩子&#xff0c;…

IO / day01 作业。

1.使用fgets统计一个文件的行号 //使用fgets统计一个文件的行号#include <string.h> #include <stdlib.h> #include <stdio.h>int main(int argc, const char *argv[]) {if(argc<2) //获取文件名{printf("input error\n!");printf("usage…

Flutter页面刷新失败?看看是不是这个原因

文章目录 问题描述解决办法在控件A中定义回调函数在页面中使用控件A 原因分析回顾问题原因分析 setState使用注意事项上下文正确性异步更新避免深层嵌套避免频繁调用避免在 build 方法中调用避免在 dispose 方法中调用 问题描述 我用flutter开发了一个页面&#xff0c;页面上有…

苍穹外卖——删除购物车信息

1. 删除购物车中一个商品 1.1 产品原型 1.2 接口设计 1.3 数据模型 shopping_cart表&#xff1a; -- auto-generated definition create table shopping_cart (id bigint auto_increment comment 主键primary key,name varchar(32) null comment 商品名称…

上门服务系统|东郊到家软件提供高效服务的科技支柱

预约上门服务系统的崛起改变了传统服务行业的格局。用户不再需要亲自前往实体店面&#xff0c;而是通过几次点击就能享受到各类服务。这背后离不开预约上门服务系统的智能化和高效性&#xff0c;而源码正是这个系统的灵魂所在。下面小编就给大家介绍下上门服务系统开发优势。 1…

windows 如何卸载证书

1、windows r 2、输入 certmgr.msc 3、进入证书管理&#xff0c;选择个人 4、选择个人---找到要删除的证书&#xff0c;删除 就可以了。

LiveGBS流媒体平台GB/T28181功能-概览中负载信息直播、回放、播放、录像、H265、级联查看负载会话列表

LiveGBS常见问题-概览中负载信息具体表示什么直播、回放、播放、录像、H265、级联等 1、负载信息2、负载信息说明3、会话列表查看3.1、会话列表 4、搭建GB28181视频直播平台 1、负载信息 实时展示直播、回放、播放、录像、H265、级联等使用数目 2、负载信息说明 直播&#x…

SD-WAN组网中的CPE及云服务CPE部署方法

什么是CPE&#xff1f; CPE全称为Customer Premises Equipment&#xff0c;即客户端设备&#xff0c;在SD-WAN中通常为路由器&#xff0c;部署在中心点和分支上&#xff0c;提供连接和路由、协议转换、流量监控等功能。一般可分为硬件CPE和虚拟化CPE&#xff08;virtual CPE&a…

项目设计---网页五子棋

文章目录 一. 项目描述二. 核心技术三. 需求分析概要设计四. 详细设计4.1 实现用户模块4.1.1 约定前后端交互接口4.1.2 实现数据库设计4.1.3 客户端页面展示4.1.4 服务器功能实现 4.2 实现匹配模块4.2.1 约定前后端交互接口4.2.2 客户端页面展示4.2.3 服务器功能实现 4.3 实现对…

带你用uniapp从零开发一个仿小米商场_10.开发一个占剩余窗口的滚动区域

首先是一个头部的tag切换栏,这个很简单,就不多说 源码奉上 <scroll-view scroll-x class"border scroll-row" style"height: 80rpx;"><view class"scroll-row-item" style"height: 80rpx;line-height: 80rpx;" v-for"(…

首批量子计算机即将部署!欧盟为波兰提供新算力优势

&#xff08;图片来源&#xff1a;网络&#xff09; 英国量子计算机开发商ORCA公司将为波兰的波兹南超级计算和网络中心&#xff08;PSNC&#xff09;提供两个PT-1光量子系统&#xff0c;以加速其在量子计算领域的研究和应用工作&#xff0c;如生物学、化学和机器学习领域。 …

目标检测——Mask R-CNN算法解读

论文&#xff1a;Mask R-CNN 作者&#xff1a;Kaiming He Georgia Gkioxari Piotr Dollar Ross Girshick 链接&#xff1a;https://arxiv.org/abs/1703.06870 代码&#xff1a;https://github.com/facebookresearch/Detectron R-CNN系列其他文章&#xff1a; R-CNN算法解读SPP…

WordPress(安装比子主题文件)zibll-7.5.1

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、新建网站二、配置ssl三.配置伪静态四.上传文件五.添加本地访问前言 提示:这里可以添加本文要记录的大概内容: 首先,我们要先理解什么是授权原理。 原理就是我们大家运营网站,点击授权…

【高效开发工具系列】Hutool DateUtil工具类

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

Java核心知识点整理大全25-笔记

目录 25. Hadoop 25.1.1. 概念 25.1.2. HDFS 25.1.2.1. Client 25.1.2.2. NameNode 25.1.2.3. Secondary NameNode 25.1.2.4. DataNode 25.1.3. MapReduce 25.1.3.1. Client 25.1.3.2. JobTracker 25.1.3.3. TaskTracker 25.1.3.4. Task 25.1.3.5. Reduce Task 执行…

【代码】两阶段鲁棒优化/微电网经济调度入门到编程

内容包括 matlab-yalmipcplex微电网两阶段鲁棒经济调度&#xff08;刘&#xff09; matlab-yalmipcplex两阶段鲁棒微电网容量经济优化调度 两阶段鲁棒优化CCG列于约束生成和Benders代码&#xff0c;可扩展改编&#xff0c;复现自原外文论文 【赠送】虚拟储能单元电动汽车建…

FL Studio(水果软件)2024最新中文版云盘下载

如今&#xff0c;越来越多的音乐人选择使用音乐制作软件来进行音乐的创作&#xff0c;一台电脑、一款软件以及一个外接MIDI就是一个小型的音乐工作站。FL Studio成了音乐界萌新的首选&#xff0c;目前最新的版本为FL Studio2024版本。 你可以不知道如何做音乐&#xff0c;但是…