【pytorch】深度学习入门一:pytorch的安装与配置(Windows版)

news2025/1/11 20:47:15

请支持原创,认准DannisTang(tangweixuan1995@foxmail.com)

文章目录

  • 第〇章 阅读前提示
  • 第一章 准备工作
    • 第一节 Python下载
    • 第二节 Python安装
    • 第三节 Python配置
    • 第四节 Pycharm下载
    • 第五节 Pycharm安装
    • 第六节 CUDA的安装
  • 第二章 Anaconda安装与配置
    • 第一节 Anaconda下载与环境变量配置
      • 1、Anaconda下载与安装
      • 2、Anaconda配置环境变量
    • 第二节 Anaconda镜像源配置
      • 1、查看
      • 2、配置(命令行)
        • 1)直接输入命令行配置
        • 2)文件夹进行输入配置(Windows版)
      • 3、配置(界面配置)
      • 4、删除(命令行)
      • 5、修改配置源(Linux版)
      • 6、常用命令
        • 1)环境类
        • 2)包类
    • 第三节 Pytorch安装与配置
      • 1、创建Pytorch环境
      • 2、激活Pytorch环境
      • 3、关闭Pytorch环境(可选)
      • 4、找到pytorch命令
      • 5、验证pytorch安装
      • 附节一、报错的场景和方法
        • 1、创建环境报错
        • 2、创建pytorch报错
        • 3、下载时间超时
        • 4、报错信息
      • 第四节 进入pycharm
        • 1、添加环境
        • 2、小试牛刀

第〇章 阅读前提示

本文重点放在深度学习上,因此,对于Python部分的内容,会稍显不足。如果本文的读者想重点了解Python相关的知识,请查看其他的文章。但是为了方便入门,本文在前面依然会描述Python配置相关的内容,以及一些需要用到的Python相关的命令等。

同时值得注意的是,本文如果没有特殊说明,均是在Windows平台下进行开发和调试等。

并且为了保证兼容性,硬件设备(即你的电脑主机)最好为英特尔的CPU与英伟达的GPU(通俗理解为显卡)。

第一章 准备工作

本章将讲解深度学习的准备工作,因为不是本文的主要目的,所以不会花费很大的篇幅去讲解, 如果在本章的过程中出现问题,可以在网络中搜索下出现的问题。

本章讲解,在windows下安装和配置python和pycharm以及英伟达的cuda的安装。

第一节 Python下载

Python官网下载,下载版本为3.11.5。下载地址链接(Windows版本)

选择自己的版本进行下载,不同Python的版本可能会有兼容性的问题

(版本兼容性:通常情况来说,大版本不同,不兼容性较大,小版本不同,兼容性较小。版本号大的会兼容版本号小的。但不排除有特殊情况)

第二节 Python安装

如果选择exe的安装包的方式的话,直接下一步下一步的安装即可

第三节 Python配置

exe安装包的方法进行默认的配置

第四节 Pycharm下载

在jetbrain的官网下载Pycharm下载地址链接(Windows版本)

第五节 Pycharm安装

因为是exe安装包,所以直接下一步即可。安装完成之后,需要license,请自行解决license。

第六节 CUDA的安装

在cmd命令窗口下面,执行命令

nvidia-smi

查看自己的cuda版本,如果版本太低的话,可以下载Nvidia GeForce Experience进行更新驱动
未更新英伟达驱动前更新英伟达驱动后

注:这里我更新过英伟达的显卡驱动,用的是Nvidia GeForce Experience,直接自动更新,所以前后的版本不一致(第一次是516.94,cuda是11.7;第二次是546.17,cuda是12.3)。

并且如果使用Nvidia GeForce Experience的话,需要登录Nvidia的账号,自行注册一个即可,这里不再赘述。

Nvidia GeForce Experience下载地址(下载安装后自动更新驱动,含CUDA)

第二章 Anaconda安装与配置

第一节 Anaconda下载与环境变量配置

1、Anaconda下载与安装

先下载anaconda,因为是免费的,所以官网下载即可
下载地址链接(Windows版本)

下载完成后,进行安装,安装后即可使用,安装过程中直接点下一步即可。安装的路径为,需要记录这两个路径,后面在pycharm需要用到,如果是你自己安装的(并且是默认的路径),将用户名替换成你自己的用户名即可

C:\Users\用户名\AppData\Local\anaconda3
C:\Users\用户名\AppData\Local\anaconda3\Scripts\conda.exe

安装完成后(如果是默认安装的话),可以在开始菜单中看到这些选项,其中用的最多的就是这个Anaconda Prompt后面也会重点用到。
Anaconda Prompt命令行

2、Anaconda配置环境变量

进入控制面板,然后输入环境变量,编辑Path即可
找到环境变量Path

然后添加以下三个路径即可
添加环境变量

点击确定即可完成添加。

第二节 Anaconda镜像源配置

1、查看

在Anaconda prompt中输入以下的命令以查看当前的镜像源

# 查看镜像源
conda config --show channels

# 查看默认镜像源
conda config --show default_channels

2、配置(命令行)

1)直接输入命令行配置

在Anaconda prompt中输入以下的命令(选择性添加)

# 添加阿里源
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/r/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/msys2/

# 添加清华源(不建议用)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/

# (这几条是删除清华源的命令)
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/

# 添加中科大源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/

# 如果是使用命令行进行镜像源配置,这里需要补充一条命令,在后续使用会有帮助
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
2)文件夹进行输入配置(Windows版)

直接打开文件夹窗口,输入

C:/user/你的用户/.condarc

这里将你的用户换成你的Windows的电脑的用户即可,直接回车,会弹出打开方式,采用记事本或是你常用笔记软件打开都行,但是建议用记事本,因为常用的软件(比如UE或是notepad++会修改编码,然后用不了)。

然后换成以下的配置(全量替换),直接保存关闭就行(可以自行备份之前的配置信息)

# 以下为阿里源(推荐使用)
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.aliyun.com/anaconda/pkgs/main/
  - https://mirrors.aliyun.com/anaconda/pkgs/free/
  - https://mirrors.aliyun.com/anaconda/pkgs/r/
  - https://mirrors.aliyun.com/anaconda/pkgs/msys2/
custom_channels:
  conda-forge: https://mirrors.aliyun.com/anaconda/cloud
  msys2: https://mirrors.aliyun.com/anaconda/cloud
  bioconda: https://mirrors.aliyun.com/anaconda/cloud
  menpo: https://mirrors.aliyun.com/anaconda/cloud
  pytorch: https://mirrors.aliyun.com/anaconda/cloud
  pytorch-lts: https://mirrors.aliyun.com/anaconda/cloud
  simpleitk: https://mirrors.aliyun.com/anaconda/cloud
remote_read_timeout_secs: 10000.0


# 以下为清华源(不建议用,不太行,可能网络会有问题)
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
remote_read_timeout_secs: 10000.0

3、配置(界面配置)

该步骤与上步骤(步骤2)能实现同样的配置,因此,该步骤和上步骤二选一进行操作即可。
在Anaconda navigator中操作,
1)点击environment,点击channels,点击添加
2)输入以下的配置源(可以按需选择),输入完成后按回车确认

https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
https://mirrors.aliyun.com/anaconda/pkgs/free/
https://mirrors.aliyun.com/anaconda/pkgs/main/

3)删除默认的配置源defaults
4)点击update channels进行更新

4、删除(命令行)

在Anaconda prompt中输入以下的命令

# 以下为几个例子,如有需要,则进行替换源即可
conda config --remove channels defaults
conda config --remove channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pro/

conda config --remove default_channels https://mirrors.aliyun.com/anaconda/pkgs/free/

这里采用界面操作形式删除也可以,具体方法参照上步骤(步骤3)

5、修改配置源(Linux版)

1)使用vim修改的配置文件

vim ~/.condarc

2)清空内容,然后复制下午并保存

#以下是阿里源(推荐使用)
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.aliyun.com/anaconda/pkgs/main/
  - https://mirrors.aliyun.com/anaconda/pkgs/free/
  - https://mirrors.aliyun.com/anaconda/pkgs/r/
  - https://mirrors.aliyun.com/anaconda/pkgs/msys2/
custom_channels:
  conda-forge: https://mirrors.aliyun.com/anaconda/cloud
  msys2: https://mirrors.aliyun.com/anaconda/cloud
  bioconda: https://mirrors.aliyun.com/anaconda/cloud
  menpo: https://mirrors.aliyun.com/anaconda/cloud
  pytorch: https://mirrors.aliyun.com/anaconda/cloud
  pytorch-lts: https://mirrors.aliyun.com/anaconda/cloud
  simpleitk: https://mirrors.aliyun.com/anaconda/cloud
remote_read_timeout_secs: 10000.0

# 以下是清华源(不建议使用)
channels:
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

6、常用命令

1)环境类
# 进入(激活)环境(将命令中的中文替换对应的英文名)
activate 环境名

# 退出(关闭)环境(将命令中的中文替换对应的英文名)
deactivate 环境名

#列出所有环境(三条命令皆可)
conda env list
conda info --envs
conda info -e

# 删除环境及下属所有包(将命令中的中文替换对应的英文名)
conda remove -n 环境名 --all 

# 删除本环境下的所有包(不删除环境)
conda clean -all

# 复制环境(将命令中的中文替换对应的英文名)
conda create --name 新环境名 --clone 旧环境名
2)包类
# 查看conda的版本号,通常都是查看版本号以验证某软件是否安装
conda --version

# 列出当前环境的所有包
conda list

# 查看当前环境已安装包
conda list

# 查找可安装的包(将命令中的中文替换对应的英文名)
conda search 包名

# 在当前环境安装包(将命令中的中文替换对应的英文名)
conda install 包名

# 在指定环境安装包(将命令中的中文替换对应的英文名)
conda install --name 环境名 包名

# 在当前环境更新包(将命令中的中文替换对应的英文名)
conda update 包名

# 在当前环境更新所有包(以下两条命令皆可)
conda update --all
conda upgrade --all

# 在当前环境卸载包(将命令中的中文替换对应的英文名)
conda remove 包名

# 在指定环境卸载包(将命令中的中文替换对应的英文名)
conda remove --name 环境名 包名

# 精确查找包
conda search --full-name 精确包名
# 例子:conda search --full-name python

# 模糊查找包
conda search 模糊包名
# 例子:conda search py

第三节 Pytorch安装与配置

1、创建Pytorch环境

使用 Anaconda Prompt (菜单栏中选项,如果不记得了,查看第二章第一节的第1步)进入命令行,创建一个pytorch环境

# 命令模板
conda create -n 环境名称 python=实际安装Python版本

# 实际执行
conda create -n pytorchDemoProject python=3.11.5

我这里创建的环境名称为pytorchDemoProject,实际的Python的版本为3.11.5

注:如果不指定python版本,则会安装anaconda的相应的版本的。如anaconda是第二版,则会安装python2的版本;如anaconda是第三版,则会安装python3的版本

在安装过程中,先会找到对应的包,然后过程中提提示是否安装Y/N,这时候输入y并回车即可。
如图,第一张图为更新升级conda。再执行一次,即为安装pytorch。
升级conda作者注:这里在安装过程中实际上出现了一些问题,作者解决了之后,即可成功安装。但因如此,没能成功截取到图片。因此这里少了一张安装的图片,但安装过程如上文所述,只需在过程中按y并回车以确认安装即可。

2、激活Pytorch环境

然后激活刚刚创建的pytorchDemoProject 环境,这里的激活也可以理解为进入的意思

conda activate pytorchDemoProject 

如图
进入创建好的pytorch环境

3、关闭Pytorch环境(可选)

这一步是可选的,有激活的命令,也就有对应的关闭命令,关闭刚刚创建的pytorchDemoProject环境

conda deactivate pytorchDemoProject 

4、找到pytorch命令

去官网找到安装命令

然后根据图示的方法选择命令
官网的安装命令

复制这里生成的命令(即Run this Command中的命令,也就是下面这条),然后执行生成的命令,以安装pytorch

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

安装过程中还要输入一次y进行确认,在安装过程中会遇到很多问题,请查看下面的附节一进行排查和解决

5、验证pytorch安装

使用命令先查看是否安装成功

conda list

如图,显示如下,即表示该环境下有这些包了
安装成功的包

安装完了之后,输入python命令进入python界面
然后输入import torch进行导入
然后输入torch.cuda.is_available()进行验证是否成功,如图
验证是否安装成功

如图,即表示安装成功

附节一、报错的场景和方法

1、创建环境报错

报错提示如下

CondaHTTPError: HTTP 000 CONNECTION FAILED for url https://conda.anaconda.org/pytorch/win-64/pytorch-2.1.1-py3.11_cuda12.1_cudnn8_0.tar.bz2
Elapsed: -
An HTTP error occurred when trying to retrieve this URL.
HTTP errors are often intermittent, and a simple retry will get you on your way.

没有更新配置镜像源所致,需要更新一下镜像源

2、创建pytorch报错

报错提示如下
错误的配置了镜像源

配置了错误的镜像源所致,需要更新一下配置的镜像源

3、下载时间超时

有时候也会报超时的错误,如图

CondaError: Downloaded bytes did not match Content-Length
url: https://conda.anaconda.org/pytorch/win-64/pytorch-2.1.1-py3.11_cuda12.1_cudnn8_0.tar.bz2
target_path: C:\Users\tangweixuan\AppData\Local\anaconda3\pkgs\pytorch-2.1.1-py3.11_cuda12.1_cudnn8_0.tar.bz2
Content-Length: 1339118426
downloaded bytes: 26179998

解决方法1:
直接命令行

# 设置100000.0秒的超时时长
conda config --set remote_read_timeout_secs 100000.0

解决方法2:
找到.condarc配置文件,在配置文件最后添加

remote_read_timeout_secs: 100000.0
4、报错信息
Downloading and Extracting Packages
Preparing transaction: done
Verifying transaction: failed
CondaVerificationError: The package for libcurand-dev located at C:\Users\tangweixuan\AppData\Local\anaconda3\pkgs\libcurand-dev-10.3.4.101-0
appears to be corrupted. The path 'bin/curand64_10.dll'
specified in the package manifest cannot be found.
CondaVerificationError: The package for libcurand-dev located at C:\Users\tangweixuan\AppData\Local\anaconda3\pkgs\libcurand-dev-10.3.4.101-0
appears to be corrupted. The path 'include/curand_precalc.h'
specified in the package manifest cannot be found.
ClobberError: This transaction has incompatible packages due to a shared path.
packages: nvidia/win-64::cuda-cupti-12.1.105-0, nvidia/win-64::cuda-nvtx-12.1.105-0, nvidia/win-64::cuda-profiler-api-12.3.101-0
path: 'license'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/cjpeg.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/djpeg.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/jpegtran.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/rdjpgcom.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/wrjpgcom.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jconfig.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jerror.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jmorecfg.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jpeglib.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/lib/jpeg.lib'

暂时没找到这个报错的原因,直接从头开始来一遍了

第四节 进入pycharm

1、添加环境

直接使用命令行的形式来操作不好操作,这个时候用pycharm进行操作与开发。使用pycharm可以把刚刚创建好的anaconda的环境添加进去,就无需使用命令行进行开发了。
打开pycharm,任意创建一个pure python的project(为了方便看,我这里创建的是一个名叫pytorchProject的项目),你也可以随意命名。然后进入setting设置,然后添加接口
添加接口

然后选择路径
选择路径

使用我们刚刚的路径

# 注意:这里是我的电脑用户tangweixuan,你自己的电脑用户不一定是这个,请注意替换
C:\Users\tangweixuan\AppData\Local\anaconda3\Scripts\conda.exe

使用刚刚的路径

然后加载一下,并且选择我们在Anaconda中创建pytorchDemoProject(此刻,教育完成了闭环了。请给自己鼓掌打打气,你基本已经完成了安装和配置了),并且点击OK即可
选择创建好的环境

可以看到我们刚刚安装的环境里面的包,都有了
环境中包含有的包

然后点击ok,回到主界面;在main.py中输入

import torch
print(torch.cuda.is_available())

点击右上的播放按键进行执行
执行简单的命令

如上图,在下方控制台上打印出了True,表示成功了。

2、小试牛刀

在刚刚的pycharm中,使用和尝试一些基本的pytorch语法来小试牛刀吧!

# 创建一个未初始化的5x3矩阵
x1 = torch.empty(5, 3)
print('x1的结果是:')
print(x1)

# 创建一个随机初始化的5x3矩阵
x2 = torch.rand(5, 3)
print('x2的结果是:')
print(x2)

# 创建一个5x3的零矩阵,类型为long
x3 = torch.zeros(5, 3, dtype=torch.long)
print('x3的结果是:')
print(x3)

# 直接从数据创建tensor
x4 = torch.tensor([5.5, 3])
print('x4的结果是:')
print(x4)

这时输入到main.py中(注意,import torch这句话需要一直保留,即使在后面的开发中也需要保留),可以在下方的控制台看到输出的结果
输入一些简单的pytorch命令
控制台的具体结果如下图
控制台的具体结果

到这里,你就基本完成pytorch的安装与配置了,接下来,可以大展拳脚了,你也来试试看吧(完结撒花)。

本文完全免费且公开,如果你觉得不错的话,请扫描下方二维码进行赞赏吧,你的支持就是我最大的动力,感谢!

请支持原创,认准DannisTang(tangweixuan1995@foxmail.com)

赞赏码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1274833.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

上门服务系统|北京上门服务软件有哪些便利功能?

上门服务软件是一种便捷、高效的服务工具,广泛应用于各种行业领域,包括但不限于家政服务、维修维护、清洁保洁、美甲美发等。预约上门服务系统的崛起改变了传统服务行业的格局。用户不再需要亲自前往实体店面,而是通过几次点击就能享受到各类…

如何生成纯文本的目录树

参考资料: https://ascii-tree-generator.com/ 无需多言,感谢这些前辈的智慧。界面如下:

后仿真 ERROR

后仿真 error ERROR (SFE-23): "input.scs" 252: The instance _57_D32_noxref is referencing an undefined model or subcircuit, parasitic_nwd. Either include the file containing the definition of parasitic_nwd, or define parasitic_nwd before running t…

数组?NO 系Vector啊!

文章目录 前言一、vector的介绍二、vector的使用2.1 vector求容量的用法2.2 vector的增删查改用法2.2.1 尾插2.2.2 尾删2.2.3 头插2.2.4 任意位置删除 2.3 vector的iterator是什么以及失效问题 三、vector的模拟实现3.1 成员变量3.2 成员函数3.2.1 构造函数3.2.2 拷贝构造3.2.3…

docker部署elasticsearch+kibana+head

前言 最近,项目需要使用elasticsearch,所以就想快速安装一个使用,最开始是docker安装了7.10.1版本。 后面计划使用Java开发,发现有 RestHighLevelClient 和 Elasticsearch Java API Client两种客户端连接方式。 然后网上查阅了一…

AI为基,快手新商业图景浮现

监制 | 何玺 排版 | 叶媛 快手新商业图景浮现! 11月21日,快手发布了2023年Q3财报。该季度内,快手以超2成营收增长的亮眼业绩,展示出强大的经营韧性。同时其在付费短剧、AI应用等业务上的拓展,则让行业和资本市场看到…

无限移动的风景 css3 动画 鼠标移入暂停

<style>*{margin:0;padding:0;/* box-sizing: border-box; */}ul{list-style: none;}#nav{width:900px;height:100px;border:2px solid rgb(70, 69, 69);margin:100px auto; overflow: hidden;}#nav ul{animation:moving 5s linear infinite;width:200%; /*怎么模拟动画…

RUM增强APP端快照配置全量会话回放与自定义协议网络请求采集功能

一直以来&#xff0c;博睿数据秉承着“让每一款软件运行更完美”的产品理念&#xff0c;注重用户体验和反馈&#xff0c;以持续的技术创新&#xff0c;为广大用户提供轻盈、有序、精准的IT运维一体化智能可观测平台&#xff0c;降低运维成本。 近期&#xff0c;博睿数据根据一…

企业如何做好合规管理?

近年来“合规”作为一个热点话题&#xff0c;频繁出现在公众视野&#xff0c;已然成为企业管理发展的大趋势。国家相继出台的各项合规管理标准预示着我国的企业合规管理正逐步从头部央企向民营企业扩展。因此&#xff0c;各大企业将合规管理作为了企业管理的首要任务。 随着中…

hadoop-3.3.5安装过程

准备资源三台虚拟机&#xff1a; 1&#xff09;准备3台服务器&#xff08;关闭防火墙、静态IP、主机名称&#xff09; 2&#xff09;安装JDK 3&#xff09;配置环境变量 4&#xff09;安装Hadoop 5&#xff09;配置环境变量 安装虚拟机&#xff08;略&#xff09;--1台即…

第二证券:趋势线是画最低点还是收盘价?

趋势线是股票分析中最底子的技术指标之一。趋势线是一种可帮忙股票生意者辨认价格趋势的图形方法。趋势线是可以经过联接恣意两个价格点画出的一条直线。但是&#xff0c;在画出趋势线时&#xff0c;一个常见的问题是&#xff0c;运用最低点还是收盘价来画趋势线&#xff1f;在…

ROS话题消息实时展示在WEB网页上

【使用背景】 最近公司搞了一个室外无人车的项目&#xff0c;需要用到GPS组合惯导&#xff0c;但是这套传感器由于成本控制&#xff0c;它没有提供小程序或是APP之类的数据监测手段&#xff0c;只能通过一个Windows上位机软件去看GPS实时数据&#xff0c;这对于单人外场调试来…

【Skynet 入门实战练习】分布式 ID | 雪花算法 | 缓存设计 | LRU算法 | 数据库

文章目录 前言雪花算法LRU 算法缓存模块数据库测试逻辑 前言 本节实现了 分布式 ID 生成系统&#xff0c;采用雪花算法实现唯一 ID&#xff1b;实现缓存架构&#xff0c;采用 LRU &#xff08;最近最少使用&#xff09;算法。 雪花算法 分布式 ID 生成算法的有很多种&#x…

c#学习相关系列之as和is的相关用法

一、子类和父类的关系 public class Program{static void Main(string[] args){Animal animal new Dog();// Dog dog (Dog)new Animal(); 编译成功&#xff0c;运行报错Dog dog (Dog)animal;Dog dog new Dog();Animal animal dog; //等价于Animal animal new Dog();}}pub…

最新UI酒桌喝酒游戏小程序源码,直接上传源码到开发者端即可,带流量主

源码介绍&#xff1a; 2023最新UI酒桌喝酒游戏小程序源码 娱乐小程序源码 带流量主.修改增加了广告位&#xff0c;直接上传源码到开发者端即可。 通过后改广告代码&#xff0c;然后关闭广告展示提交&#xff0c;通过后打开即可。无广告引流。 流量主版本的&#xff08;配合流…

gitlab高级功能之CI/CD组件 - 实践(二)

上一篇主要讲解了CI/CD组件的原理&#xff0c;看起来稍微有一点枯燥&#xff0c;那么接下来给大家演示下如何使用。 案例 创建一个项目&#xff08;README.md&#xff0c;template目录&#xff09; 案例1 step1: 在template中新建yml文件&#xff0c;cat templates/test-st…

计算机毕业设计|基于SpringBoot+SSM+MyBatis框架的迷你仿天猫商城购物系统设计与实现

计算机毕业设计|基于SpringBoot+MyBatis框架的仿天猫商城购物系统设计与实现 迷你仿天猫商城是一个基于SpringBoot+SSM+MyBatis框架的综合性B2C电商平台,需求设计主要参考天猫商城的购物流程:用户从注册开始,到完成登录,浏览商品,加入购物车,进行下单,确认收货,评价等…

分布式任务调度系统XXL-Job

1.介绍 XXL-JOB是一个分布式任务调度平台&#xff0c;其核心设计目标是开发迅速、学习简单、轻量级、易扩展。 执行流程&#xff1a; a、执行器根据配置的调度中心的地址&#xff0c;自动注册到调度中心 b、达到任务触发条件&#xff0c;调度中心下发任务 c、执行器基于线程池…

进程(process) vs 线程(Thread)

文章目录 前言一、进程&#xff08;process) vs 线程&#xff08;Thread&#xff09;引用自维基百科引用自CSDN INCOE AI引用自 geeksforgeeksOS( Operating System )如何调度线程的线程锁的核心原理是什么? 总结 前言 &#x1f680; 多方面理解进程(process) &#xff0c;线…

gateway网关一直404问题

1.nacos配置管理->配置管理列表-> 有gateway网关的相关配置文件 2. idea项目中添加jar包 3.配置bootstarp.yaml 4. 通过网关访问路径&#xff1a; ip网关端口网关配置服务名字接口