快速了解ChatGPT(大语言模型)

news2025/1/12 22:49:02

目录

GPT原理:文字接龙,输入一个字,后面会接最有可能出现的文字。

GPT4

学会提问:发挥语言模型的最大能力


参考李宏毅老师的课快速了解大语言模型做的笔记:

Lee老师幽默的开场:

 GPT:chat Generative Pre-trained Transformer

GPTS:专属的客制化的老师。

GPT原理:文字接龙,输入一个字,后面会接最有可能出现的文字。

回答问题的方式: 

 

 给每一个后面可能输出的符号一个概率值,输出概率最大的字符(token)。拆成token的方式也是比较有意思,会根据词性,词缀或者短语来生成token,那为什么这样子分呢?

因为英文单词是无法穷举的,他太多了,而token是一个可以进行穷举,类似的,中文方块字的token划分方式也是如此,可能将短语、不同词性的词划分成一个token。

        而且输出一个词会将输出的词又添加到输入词的后面,然后又生成后续的一个token,直到end的几率是最高的就结束。其实最后的输出并不是概率最大就输出概率大的token,而是进行一个掷色子的操作,所以就导致每次输出的结果可能是不同的,那为什么每次不选概率最大的进行输出呢?

有论文验证,为什么要掷骰子 ,这篇论文就讲了如果每次选几率最大的token可能输出会出现左边的情况,每次说的一样的话,而右边就是比较正常的,所以chatGPT才会出现骗人的场景。

        但是台湾省是没有玫瑰花节日的,但你告诉GPT是有的,GPT就会进行乱说,并生成一个假的网址。

        那它是如何有记忆功能的呢?就是上下文联通的功能?比如这样:

 是因为你问的问题,包括GPT输出的内容,GPT都会作为模型的输入,最后输出新的回答。

实际上模型所做的事情:

将最有可能输出的token的几率升高一点,将其他token的输出的几率降低一点,然后依次类推:

 Transformer里面的每个方块其实就是线性袋鼠的矩阵运算,需要大量可学习的参数,里面有上亿个参数。

 上图是第一代的GPT。

然后慢慢的:

不愧是李老师,PPT还是这么的幽默,模型参数量越来越大,

这是当时与其他模型相比时的正确率,当时准确率还不算特别高。然后OPENAI还不善罢甘休,他们说GPT3其实已经很聪明了,他为什么准确率不高是因为他不知道人类社会的规则,他只是学习了网络上的很多资料,碰到什么学什么,根本不知道他要做什么事情,而且回答是毫无逻辑的,

 SO,下一个阶段:

那就是让他继续学习。引入人类老师来指导GPT进行学习,那这种方法叫做监督式学习,而前面的方法叫做自监督学习,所以前面就是预训练,后面老师的指导就是大模型微调!(我终于懂了

 Fine-Tune!!!

这里有篇论文论证了监督式学习的重要性,https://arxiv.org/abs/2203.02155, 上图说明的问题是:(1)大的模型没有监督式学习老师的监督也可能不会超过小模型通过好的监督式学习的方式(小模型也有机会胜过大模型

(2)好的老师+大模型,效果会更好。

 

 

 还有增强式学习(强化学习,不提供正确的答案,而是提供反馈,什么样的答案是好的,什么样的答案是不好的,监督式学习人类就需要花费比较多的时间或者精力,而增强式学习我们每个人都可以做出贡献,我们在提问的同时就可以隐式的引导GPT回答出更加准确的答案,强化学习这边的知识我还没学过,下次有机会学学。

 强化学习一般放在网络的后端进行引导。

ChatGPT的强化学习步骤:

(1)模仿老师的偏好

(2)向模拟老师学习

监督式学习+强化学习也就是Alignment!!!(原来如此),就是对齐的过程。

GPT4

然后,GPT4技术报告,长达近百页,作者就有3页,主要就是炫耀GPT4有多麽多麽强。但是技术细节论文里面是没有写的

 亮点就是看得见了,可以传图片给GPT4,理解图片。

发挥语言模型的最大能力

1.把需求写清楚

2.提供资料给ChatGPT

3.提供范例:描述给他抽象的内容,比如晶晶体。

4.鼓励ChatGPT再想一想,让他解决问题时候,不要让他直接给答案,让他一步一步给出计算过程,那他答对的几率就会大大增加。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1274553.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python执行shell

0x00:前言 正常一个网站分为服务端和客户端,因为是正向的,所以服务端是在目标机器上的,客户端则是攻击者机器上,在这里要感谢MiaGz大师傅,这里很多都是参考了MiaGz大师傅的文章写出来的,进行了一点个人修改…

2023年亚太杯数学建模A题——深度学习苹果图像识别(

Image Recognition for Fruit-Picking Robots 水果采摘机器人的图像识别功能 问题 1:计数苹果 根据附件 1 中提供的可收获苹果的图像数据集,提取图像特征,建立数学模型,计算每幅图像中的苹果数量,并绘制附件 1 中所有…

【localhost refused to connect】解决 linux服务器启动 jupyter notebook 后本地浏览器打不开

问题描述 在linux上输入: jupyter notebook 命令后,弹出的火狐浏览器可以打开笔记本,但是复制它给的加密 url 到 Google 或者 Edge 浏览器都出现如下情况: 解决办法 1. 生成 jupyter notebook 配置文件 在 linux 命令行输入如下…

会员权益有哪些?

品牌会员权益是品牌为了吸引和保留客户,提供给注册成为会员的客户一些特殊优惠和服务,这些权益包括了折扣优惠、会员服务等等。 这些权益可以帮助品牌建立长期的客户关系,提高客户的忠诚度和满意度。以下是一些常见的会员权益,并结…

Neo4j 程序开发 JavaAPI 嵌入式开发模式(头歌)

文章目录 第1关:JavaAPI 嵌入式开发模式任务描述相关知识创建 Neo4j 数据库启动 Neo4j 数据事务创建节点创建节点关系将创建的数据库设置为默认数据库 编程要求测试说明答案代码修改配置文件,更改默认 Neo4j 数据库代码文件 第1关:JavaAPI 嵌…

#zookeeper集群+kafka集群

kafka3.0之前是依赖于zookeeper的。 zookeeper是开源,分布式的架构。提供协调服务(Apache项目) 基于观察者模式涉及的分布式服务管理架构。 存储和管理数据。分布式节点上的服务接受观察者的注册。一旦分布式节点上的数据发生变化&#xf…

【EI会议征稿】第七届机械、电气与材料应用国际学术会议(MEMA 2024)

第七届机械、电气与材料应用国际学术会议(MEMA 2024) 2024年第七届机械、电气与材料应用国际学术会议 (MEMA 2024) 由沈阳理工大学主办,将于2024年2月23-25日在中国长沙举行。本会议将围绕“机械、电气与材料应用”的最新研究领域&#xff…

数据可视化工具APITable:实现强大的多维表格功能并随时随地远程访问

APITable免费开源的多维表格与可视化数据库公网远程访问 文章目录 APITable免费开源的多维表格与可视化数据库公网远程访问前言1. 部署APITable2. cpolar的安装和注册3. 配置APITable公网访问地址4. 固定APITable公网地址 前言 vika维格表作为新一代数据生产力平台&#xff0c…

TiDB专题---1、TiDB简介和特性

什么是TiDB TiDB 是一个分布式 NewSQL 数据库,它支持水平弹性扩展、ACID 事务、标准 SQL、MySQL 语法和 MySQL 协议,具有数据强一致的高可用特性,是一个不仅适合 OLTP 场景还适合 OLAP 场景的混合数据库。 TiDB 是 PingCAP 公司自主设计、研发…

Mendix UI页面布局以案说法

一、前言 试着回想最近一次与公司网站交互的情况,访问了多个页面,并且可能使用了某些功能。有可能基于这种互动,可以向某人介绍公司的一些主要功能。其中一些可能是更肤浅的东西,比如他们的标志是什么样子或他们的主要配色方案是…

【WebSocket】通信协议基于 node 的简单实践和心跳机制和断线重连的实现

前后端 WebSocket 连接 阮一峰大佬 WebSocket 技术博客 H5 中提供的 WebSocket 协议是基于 TCP 的全双工传输协议。它属于应用层协议,并复用 HTTP 的握手通道。它只需要一次握手就可以创建持久性的连接。 那么什么是全双工呢? 全双工是计算机网络中的…

Spring Cloud 原理(第一节)

一、百度百科 Spring Cloud是一系列框架的有序集合。它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等,都可以用Spring Boot的开发风格做到一键启动和部署。Spri…

力扣611题 有效三角形的个数 双指针算法

611. 有效三角形的个数 给定一个包含非负整数的数组 nums ,返回其中可以组成三角形三条边的三元组个数。 示例 1: 输⼊: nums [2,2,3,4] 输出: 3 解释:有效的组合是: 2,3,4 (使⽤第⼀个 2) 2,3,4 (使⽤第⼆个 2) 2,2,3 ⽰例 2: 输⼊: nums [4,2,3,4] 输出: 4 解…

我们需要什么样的HA

作为DBA,大家在运维数据库的时候都会遇到 数据库发生 Failover /Switchover 切换的场景。数据库发生切换导致业务连续性受损,少则分钟级,多则小时级别。(最近互联网的故障比较多)。 本文 基于 MySQL 数据库架构场景来分析我们在遇到数据库 HA 切换时是系…

Vue的Nuxt项目部署在服务器,pm2动态部署和npm run build静态部署

Nuxt项目的部署有两种方式,一种是静态部署,一种是动态部署 静态部署需要关闭项目的ssr功能,动态部署则不需关闭,所以怎么部署项目就看你用不用ssr功能了 。 1.静态部署 先说静态部署,很简单,只需要在nuxt…

【自动化测试】pytest 用例执行中print日志实时输出

author: jwensh date: 20231130 pycharm 中 pytest 用例执行中 print 日志 standout 实时命令行输出 使用场景 在进行 websocket 接口进行测试的时候,希望有一个 case 是一直执行并接受接口返回的数据 def on_message(ws, message):message json.loads(message)…

OSU(Optical Service Unit,光业务单元)简介

文章目录 应用场景和功能OSU关键技术基于PB的帧结构划分方式分组业务映射到OSU带宽无损调整机制 标准进展OSU构建电力系统全光底座,赋能新型电力系统 光传送网(OTN)具有大带宽、硬管道、多业务承载能力、电信级的OAM机制等技术优势&#xff0…

macOS本地调试k8s源码

目录 准备工作创建集群注意点1. kubeconfig未正常加载2. container runtime is not running3. The connection to the server 172.16.190.132:6443 was refused - did you specify the right host or port?4. 集群重置5.加入子节点 代码调试 准备工作 apple m1芯片 安装vmwa…

【JavaScript】3.4 JavaScript在现代前端开发中的应用

文章目录 1. 用户交互2. 动态内容3. 前端路由4. API 请求总结 JavaScript 是现代前端开发的核心。无论是交互效果,还是复杂的前端应用,JavaScript 都发挥着关键作用。在本章节中,我们将探讨 JavaScript 在现代前端开发中的应用,包…

Docker 镜像及其命令

文章目录 镜像Docker 镜像加载原理联合文件系统bootfs和rootfs镜像分层 镜像分层的优势容器层常用命令 镜像 镜像是一种轻量级、可执行的独立软件包,它包含运行某个软件所需的所有内容,我们把应用程序和配置依赖打包好形成一个可交付的运行环境&#xff…