我若拿出这个,阁下该如何应对,整理常用的Python库!

news2024/11/17 3:48:08

Requests

Requests是一个常用的Python第三方库,用于发送HTTP请求。它提供了简洁而直观的API,使得发送HTTP请求变得非常方便。

使用Requests库可以实现以下功能:

  1. 发送GET请求:使用requests.get(url, params=None, **kwargs)方法发送GET请求,并可以传递参数。
  2. 发送POST请求:使用requests.post(url, data=None, json=None, **kwargs)方法发送POST请求,并可以传递数据。
  3. 设置请求头:使用headers参数可以设置请求头信息。
  4. 设置超时时间:使用timeout参数可以设置请求的超时时间。
  5. 处理响应:Requests库提供了多种方法来处理响应,如获取响应内容、获取响应头、获取响应状态码等。
  6. 处理Cookie:Requests库可以自动处理Cookie,也可以手动设置和获取Cookie。
  7. 处理会话:Requests库提供了Session对象,可以在多个请求之间保持会话状态。
  8. 处理文件上传:Requests库支持文件上传,可以通过files参数上传文件。

Requests库是一个功能强大且易于使用的HTTP请求库,适用于各种网络请求场景。

Scrapy

Scrapy是一个用于爬取网站数据的Python库。它提供了一个高效且灵活的框架,可以帮助开发者快速地编写和运行爬虫程序。

使用Scrapy,你可以定义一个爬虫,指定要爬取的网站和相应的规则,然后Scrapy会自动帮你下载网页、解析数据,并将其保存到你指定的位置。它还支持异步处理、多线程和分布式爬取,可以帮助你更好地管理和优化爬取过程。

Scrapy的核心组件包括引擎(Engine)、调度器(Scheduler)、下载器(Downloader)、解析器(Spider)和管道(Pipeline)。引擎负责控制整个爬取流程,调度器负责管理待爬取的URL队列,下载器负责下载网页内容,解析器负责解析网页数据,管道负责处理爬取到的数据。

以下是一个使用Scrapy的简单示例:

import scrapy

class MySpider(scrapy.Spider):
    name = 'example'
    start_urls = ['http://example.com']

    def parse(self, response):
        # 在这里编写解析网页数据的代码
        pass

# 运行爬虫
scrapy.cmdline.execute(['scrapy', 'crawl', 'example'])

在上面的示例中,我们定义了一个名为MySpider的爬虫,指定了要爬取的起始URL为http://example.com。然后,在parse方法中,我们可以编写解析网页数据的代码。最后,通过运行scrapy.cmdline.execute命令来启动爬虫。

Scrapy还提供了丰富的配置选项和扩展机制,可以根据具体需求进行定制和扩展。它是一个功能强大且广泛应用的爬虫框架,适用于各种规模和复杂度的爬取任务。

wxPython

wxPython是一个基于Python的开源图形用户界面(GUI)工具包,它是wxWidgets C++库的Python绑定。它允许开发人员使用Python语言创建跨平台的桌面应用程序,具有丰富的GUI控件和功能。

使用wxPython,你可以创建各种类型的窗口、对话框、按钮、文本框、菜单等GUI元素,并通过事件处理机制来响应用户的操作。它支持多种操作系统,包括Windows、Mac和Linux。

以下是一个简单的示例代码,展示了如何使用wxPython创建一个基本的窗口:

import wx

class MyFrame(wx.Frame):
    def __init__(self):
        super().__init__(None, title="Hello wxPython", size=(300, 200))
        panel = wx.Panel(self)
        text = wx.StaticText(panel, label="Hello, wxPython!", pos=(100, 50))

app = wx.App()
frame = MyFrame()
frame.Show()
app.MainLoop()

这段代码创建了一个继承自wx.Frame的自定义窗口类MyFrame,并在窗口中添加了一个wx.StaticText控件显示文本。最后,通过创建wx.App对象和调用MainLoop方法来启动应用程序。

通过wxPython,你可以使用丰富的GUI控件和布局管理器来创建复杂的用户界面,并利用其提供的事件处理机制来实现交互功能。同时,wxPython还提供了许多其他功能,如绘图、文件操作、网络通信等,使得开发GUI应用程序变得更加便捷和高效。

Pillow

Pillow库是一个Python图像处理库,它提供了丰富的图像处理功能,包括图像打开、保存、裁剪、调整大小、滤镜、颜色转换等。使用Pillow库可以方便地对图像进行各种操作和处理。

安装Pillow库可以使用pip命令:

pip install pillow

使用Pillow库的示例代码如下:

from PIL import Image

# 打开图像
image = Image.open('image.jpg')

# 调整图像大小
resized_image = image.resize((500, 500))

# 保存图像
resized_image.save('resized_image.jpg')

# 裁剪图像
cropped_image = image.crop((100, 100, 300, 300))

# 显示图像
cropped_image.show()

以上代码演示了如何使用Pillow库打开、调整大小、保存和裁剪图像。你可以根据自己的需求使用Pillow库进行更多的图像处理操作。

SQLAlchemy

SQLAlchemy是一个Python的SQL工具和对象关系映射(ORM)库。它提供了一种灵活且强大的方式来处理数据库操作,可以与各种关系型数据库进行交互,如MySQL、PostgreSQL、SQLite等。

使用SQLAlchemy,可以通过定义Python类来映射数据库表,将数据库操作转化为面向对象的操作。它提供了丰富的API和查询语言,可以方便地进行数据库的增删改查操作,并支持事务处理、连接池管理等功能。

SQLAlchemy还提供了一种称为"Core"的底层API,用于直接执行SQL语句和处理数据库连接。同时,它还提供了"ORM"模块,用于将数据库表映射为Python类,实现对象和数据库之间的转换。

SQLAlchemy是一个功能强大且灵活的SQL工具和ORM库,可以帮助开发者更方便地进行数据库操作,并提供了丰富的功能和扩展性。

BeautifulSoup

BeautifulSoup是一个Python库,用于从HTML或XML文件中提取数据。它提供了一种简单而灵活的方式来解析和遍历HTML或XML文档,并从中提取所需的信息。

使用BeautifulSoup,你可以通过选择器(类似于CSS选择器)来定位和提取特定的标签或元素。它还提供了一些方便的方法来处理标签的属性、文本内容和子元素。

以下是使用BeautifulSoup解析HTML文档的基本步骤:

  1. 导入BeautifulSoup库:from bs4 import BeautifulSoup

  2. 读取HTML文件或字符串:可以使用open()函数读取本地文件,或使用requests库发送HTTP请求获取网页内容。

  3. 创建BeautifulSoup对象:使用BeautifulSoup类将HTML文档转换为BeautifulSoup对象。可以指定解析器类型,如"html.parser""lxml"

  4. 使用选择器定位元素:使用BeautifulSoup对象的方法和属性来定位和提取所需的标签或元素。常用的方法包括find()find_all()select()等。

  5. 提取数据:根据需要,可以使用BeautifulSoup对象的属性和方法来获取标签的属性、文本内容或子元素。

  6. 处理数据:根据需要,可以对提取的数据进行进一步处理、清洗或分析。

  7. 输出结果:将处理后的数据以适当的格式输出,如打印到控制台、保存到文件或传递给其他模块。

BeautifulSoup的强大之处在于它的灵活性和易用性,使得解析和提取HTML或XML数据变得简单而高效。无论是爬虫、数据抓取还是网页解析,BeautifulSoup都是一个非常有用的工具。

Twisted

Twisted是一个基于Python的事件驱动网络编程框架。它提供了一种方便的方式来编写异步网络应用程序,包括服务器和客户端。Twisted的核心思想是使用事件循环来处理网络事件,而不是使用传统的多线程或多进程模型。这种事件驱动的方式可以提高应用程序的性能和可伸缩性。

Twisted提供了许多内置的网络协议和组件,包括TCP、UDP、HTTP、SMTP等。它还支持异步IO操作、定时器、信号处理等功能。Twisted还提供了一套强大的反应器模式,使得开发者可以方便地构建复杂的网络应用程序。

使用Twisted编写网络应用程序可以简化开发过程,提高代码的可维护性。它的设计理念和功能使得它成为一个强大而灵活的工具,适用于各种网络编程场景。无论是开发高性能的服务器,还是构建实时通信的应用程序,Twisted都是一个值得考虑的选择。

NumPy

NumPy(Numerical Python)是一个开源的Python科学计算库,它提供了高效的多维数组对象和用于处理这些数组的工具。NumPy是Python科学计算的基础库之一,广泛应用于数据分析、机器学习、图像处理等领域。

使用NumPy,我们可以进行各种数值计算,如矩阵运算、线性代数、傅里叶变换等。它还提供了许多方便的函数和方法,用于数组的创建、操作和处理。

下面是一个使用NumPy创建数组的示例:

import numpy as np

# 创建一个一维数组
arr1 = np.array([1, 2, 3, 4, 5])

# 创建一个二维数组
arr2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 创建一个全零数组
zeros_arr = np.zeros((3, 3))

# 创建一个全一数组
ones_arr = np.ones((2, 2))

# 创建一个随机数组
random_arr = np.random.rand(3, 3)

# 数组的基本操作
print(arr1.shape)  # 输出数组的形状
print(arr2.ndim)  # 输出数组的维度
print(arr2.size)  # 输出数组的元素个数
print(arr2.dtype)  # 输出数组的数据类型

# 数组的运算
arr3 = arr1 + arr2  # 数组相加
arr4 = np.dot(arr1, arr2)  # 矩阵乘法

# 数组的索引和切片
print(arr1[0])  # 输出数组的第一个元素
print(arr2[1, 2])  # 输出数组的第二行第三列元素
print(arr2[:, 1])  # 输出数组的第二列元素


以上是NumPy的一些基本用法,更多详细的使用方法可以参考NumPy的官方文档。

SciPy

SciPy是一个用于科学计算的Python库。它建立在NumPy的基础上,提供了许多用于数值计算、优化、统计和信号处理等领域的函数和工具。

SciPy包含了许多子模块,每个子模块都专注于特定的科学计算任务。一些常用的子模块包括:

  • scipy.optimize:提供了优化算法,用于最小化或最大化函数的值。
  • scipy.stats:包含了统计分布和统计函数,用于概率分布的计算和统计分析。
  • scipy.signal:提供了信号处理的函数,用于滤波、频谱分析和信号生成等任务。
  • scipy.linalg:包含了线性代数的函数,用于矩阵运算和求解线性方程组。
  • scipy.integrate:提供了数值积分的函数,用于求解定积分和常微分方程等问题。

除了上述子模块外,SciPy还包含了其他一些子模块,如插值、图像处理、稀疏矩阵等。它的功能非常丰富,可以满足各种科学计算的需求。

如果你想要使用SciPy进行科学计算,你可以通过安装SciPy库来开始。你可以使用pip命令在命令行中安装SciPy:

pip install scipy

安装完成后,你就可以在Python中导入SciPy库并开始使用它的功能了。例如,你可以使用以下代码导入SciPy库:

import scipy

matplotlib

Matplotlib是一个用于绘制数据可视化的Python库。它提供了丰富的绘图工具和函数,可以创建各种类型的图表,包括线图、散点图、柱状图、饼图等。

使用Matplotlib可以轻松地创建和定制图表,包括设置标题、坐标轴标签、图例等。它还支持多种输出格式,如保存为图片文件或直接在Jupyter Notebook中显示。

下面是一个简单的例子,展示如何使用Matplotlib创建一个简单的折线图:

import matplotlib.pyplot as plt

# 创建数据
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

# 创建折线图
plt.plot(x, y)

# 设置标题和坐标轴标签
plt.title("Simple Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")

# 显示图表
plt.show()

以上代码将创建一个包含5个点的折线图,x轴表示1到5的整数,y轴表示2到10的整数。图表将显示标题为"Simple Line Plot",x轴标签为"X-axis",y轴标签为"Y-axis"。

Matplotlib还提供了许多其他功能和选项,可以根据需要进行进一步的定制和调整。

Pygame

Pygame是一个用于开发2D游戏和多媒体应用程序的Python库。它提供了一系列功能强大的工具和函数,使开发者能够轻松创建游戏界面、处理用户输入、播放音频和视频等。Pygame基于SDL(Simple DirectMedia Layer)库,可以在多个平台上运行,包括Windows、Mac OS和Linux。

使用Pygame,你可以创建游戏窗口、绘制图形、处理键盘和鼠标事件、播放音频和视频等。它还提供了一些方便的功能,如碰撞检测、精灵动画和粒子效果等,使游戏开发变得更加简单和有趣。

以下是一个使用Pygame创建一个简单游戏窗口的示例代码:

import pygame

# 初始化Pygame
pygame.init()

# 创建游戏窗口
screen = pygame.display.set_mode((800, 600))

# 设置窗口标题
pygame.display.set_caption("My Game")

# 游戏主循环
running = True
while running:
    # 处理事件
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            running = False

    # 更新游戏逻辑

    # 绘制游戏界面
    screen.fill((0, 0, 0))
    pygame.display.flip()

# 退出Pygame
pygame.quit()

以上代码创建了一个800x600大小的游戏窗口,并在窗口中绘制了一个黑色背景。游戏窗口会一直保持打开,直到用户关闭窗口。

Pygame还提供了许多其他功能,如绘制图像、播放音频、处理碰撞等。可以通过查阅Pygame的官方文档来了解更多详细信息和示例代码。

Pyglet

Pyglet是一个用于开发多媒体应用程序的Python库。它提供了一个简单而强大的界面,用于创建图形、音频和视频应用程序。Pyglet具有跨平台的特性,可以在Windows、Mac和Linux等操作系统上运行。

使用Pyglet,你可以创建窗口、渲染图形、播放音频和视频等。它还提供了丰富的图形和多媒体功能,如绘制形状、加载纹理、处理用户输入等。Pyglet还支持OpenGL,可以进行高性能的图形渲染。

以下是一个使用Pyglet创建窗口的简单示例:

import pyglet

window = pyglet.window.Window()

@window.event
def on_draw():
    window.clear()

pyglet.app.run()

这个示例创建了一个窗口,并在窗口中清除了内容。你可以根据自己的需求添加更多的绘制和交互逻辑。

Pyglet还提供了许多其他功能,如音频播放、视频播放、键盘和鼠标事件处理等。可以通过查阅Pyglet的官方文档来了解更多详细信息和示例代码。

pyQT

pyQT是一个Python编程语言的GUI工具包,用于创建图形用户界面(GUI)应用程序。它是基于Qt框架的Python绑定,提供了丰富的GUI组件和功能,使开发者能够轻松地创建跨平台的应用程序。

pyQT的主要特点包括:

  • 跨平台性:pyQT可以在多个操作系统上运行,包括Windows、MacOS、Linux等。
  • 强大的GUI组件:pyQT提供了丰富的GUI组件,如按钮、文本框、下拉框等,使开发者能够创建各种交互式界面。
  • 事件驱动编程:pyQT使用事件驱动的编程模型,开发者可以通过连接信号和槽来处理用户的操作和事件。
  • 支持多媒体和图形:pyQT支持多媒体功能,如播放音频和视频,同时也提供了强大的图形绘制功能。
  • 易于学习和使用:pyQT具有清晰的文档和丰富的示例代码,使开发者能够快速上手并进行开发。

pyQT是一个功能强大且易于使用的GUI工具包,适用于开发各种类型的应用程序,包括桌面应用、嵌入式系统等。

pyGtk

pyGtk是一个Python绑定的GTK+图形用户界面工具包。GTK+是一个开源的跨平台图形库,用于创建图形用户界面。pyGtk允许开发者使用Python语言来创建和管理GTK+应用程序的界面。

使用pyGtk,你可以使用Python语言编写代码来创建窗口、按钮、标签等各种界面元素,并通过事件处理来响应用户的操作。pyGtk提供了丰富的功能和组件,可以帮助开发者快速构建功能强大的图形界面应用程序。

下面是一个使用pyGtk创建一个简单窗口的示例代码:

import gtk

def on_button_clicked(widget, data=None):
    print("Hello, World!")

window = gtk.Window(gtk.WINDOW_TOPLEVEL)
button = gtk.Button("Click Me")

button.connect("clicked", on_button_clicked)

window.add(button)
window.show_all()

gtk.main()

这段代码创建了一个窗口,并在窗口中添加了一个按钮。当按钮被点击时,会调用on_button_clicked函数,并在控制台输出"Hello, World!"。

pyGtk是一个强大的工具包,可以帮助开发者创建各种复杂的图形界面应用程序。如果你对图形界面开发感兴趣,可以尝试使用pyGtk来构建自己的应用程序。

Scapy

Scapy是一个强大的Python库,用于网络数据包的创建、发送、捕获和分析。它提供了一种简单而灵活的方式来构建和发送自定义的网络数据包,并且可以用于网络协议的研究、网络安全测试和网络流量分析等领域。

使用Scapy,你可以轻松地创建各种类型的网络数据包,包括TCP、UDP、ICMP等。你可以设置数据包的各个字段,如源IP地址、目标IP地址、端口号等。此外,Scapy还支持对数据包进行发送和接收,并可以捕获网络流量进行分析。

以下是一个使用Scapy发送TCP数据包的示例代码:

from scapy.all import *

# 创建一个TCP数据包
packet = IP(src="192.168.0.1", dst="192.168.0.2") / TCP(sport=12345, dport=80)

# 发送数据包
send(packet)

上述代码创建了一个源IP地址为192.168.0.1,目标IP地址为192.168.0.2的TCP数据包,并指定了源端口号为12345,目标端口号为80。然后使用send()函数发送该数据包。

Scapy还提供了丰富的功能和方法,可以进行更复杂的网络数据包操作和分析。你可以使用Scapy来构建网络协议的自定义实现,进行网络流量的嗅探和分析,以及进行网络安全测试等。

Scapy是一个非常强大和灵活的工具,可以帮助你在网络领域进行各种任务和研究。

pywin32

pywin32是一个Python扩展模块,它提供了与Windows操作系统交互的功能。通过pywin32,我们可以使用Python来操作Windows的各种功能和API,包括但不限于文件操作、注册表操作、进程管理、窗口控制等。它是一个非常强大和实用的工具,特别适用于开发Windows平台的应用程序或进行系统级别的操作。

要使用pywin32,首先需要安装它。可以通过在命令行中运行pip install pywin32来安装最新版本的pywin32。安装完成后,就可以在Python代码中导入pywin32模块,并使用其中的函数和类来实现相应的功能。

以下是一个使用pywin32模块读取注册表的示例代码:

import win32api

# 读取注册表中的键值
value = win32api.RegQueryValueEx("HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\Shell Folders", "Desktop")[0]
print(value)

以上代码会输出当前用户桌面的路径。

pywin32还提供了许多其他功能,包括但不限于窗口控制、进程管理、文件操作等。可以参考官方文档或其他教程来学习更多关于pywin32的用法和功能。

nltk

nltk(Natural Language Toolkit)是一个用于自然语言处理(NLP)的Python库。它提供了丰富的工具和资源,用于处理文本数据,包括分词、词性标注、句法分析、语义分析、情感分析等。同时,nltk还包含了大量的语料库和预训练模型,可以用于构建和评估NLP模型。无论是学术研究还是实际应用,nltk都是一个非常有用的工具。

nose

nose库是一个用于Python单元测试的第三方库。它提供了一组简单易用的函数和装饰器,用于编写和运行测试用例。使用nose库可以方便地进行测试驱动开发(TDD)和行为驱动开发(BDD),并且支持自动发现和运行测试用例。

安装nose库可以使用pip命令:

pip install nose

使用nose库编写测试用例时,可以使用一些常用的装饰器来标记测试函数,例如:

  • @nose.tools.assert_equal:用于比较两个值是否相等。
  • @nose.tools.assert_true:用于判断一个表达式是否为真。
  • @nose.tools.assert_raises:用于判断一个函数是否抛出了指定的异常。

以下是一个使用nose库编写的简单示例:

import nose

def test_addition():
    assert 1 + 1 == 2

def test_subtraction():
    assert 5 - 3 == 2

if __name__ == '__main__':
    nose.run()

在命令行中运行该脚本,nose库会自动发现并运行所有以test_开头的测试函数,并输出测试结果。

更多关于nose库的详细信息和用法,请参考官方文档:nose官方文档

SymPy

SymPy是一个用Python编写的符号计算库。它提供了一组强大的工具,用于处理符号表达式、求解方程、进行微积分、代数运算等。SymPy可以用于数学、科学和工程领域的计算和建模。

SymPy支持各种数学操作,包括简化表达式、展开表达式、求解方程、求导、积分、矩阵运算等。它还提供了符号计算的功能,可以处理符号变量和符号函数,进行符号计算和符号求解。

SymPy还支持LaTeX输出,可以将符号表达式转换为LaTeX格式的数学公式。这使得SymPy非常适合用于编写科学论文、教学材料和技术文档。

下面是一个使用SymPy进行简单计算的示例:

from sympy import symbols, simplify, expand

x, y = symbols('x y')
expr = (x + y)**2
simplified_expr = simplify(expr)
expanded_expr = expand(expr)

print("原始表达式:", expr)
print("简化后的表达式:", simplified_expr)
print("展开后的表达式:", expanded_expr)

输出结果为:

原始表达式: (x + y)^2
简化后的表达式: x^2 + 2*x*y + y^2
展开后的表达式: x^2 + 2*x*y + y^2

以上就是SymPy的简单介绍,它是一个功能强大的符号计算库,可以帮助我们进行各种数学计算和符号求解。

IPython

IPython是一个交互式的Python编程环境,它提供了比标准Python解释器更强大的功能和更好的用户体验。IPython支持代码自动补全、语法高亮、代码调试、代码执行时间统计等功能,使得编写和调试Python代码更加方便和高效。

在IPython中,可以使用Markdown语法来编写文档和注释,以更好地组织和展示代码。Markdown是一种轻量级的标记语言,可以快速地创建格式化的文本,包括标题、列表、链接、图片等。

IPython还支持使用LaTeX语法来编写数学公式,以便在文档中插入数学公式。LaTeX是一种专业的排版系统,广泛用于科学、技术和数学领域。通过在IPython中使用LaTeX语法,可以方便地插入各种数学符号、公式和方程式。

IPython是一个功能强大的Python编程环境,支持Markdown和LaTeX语法,使得编写和展示代码、文档和数学公式更加方便和美观。

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
Python全套学习资料

在这里插入图片描述

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

5️⃣Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1270724.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue2全局混入正确使用场景和错误场景示例

全局混入在 Vue.js 中的使用场景需要谨慎考虑,因为它会影响所有组件。以下是一些正确和错误的使用场景的例子: 正确的使用场景: 全局工具方法: // 正确的使用场景 Vue.mixin({methods: {$formatDate: function (date) {// 格式化…

K8s 多租户方案的挑战与价值

在当今企业环境中,随着业务的快速增长和多样化,服务器和云资源的管理会越来越让人头疼。K8s 虽然很强大,但在处理多个部门或团队的业务部署需求时,如果缺乏有效的多租户支持,在效率和资源管理方面都会不尽如人意。 本…

<Linux>(极简关键、省时省力)《Linux操作系统原理分析之存储管理(1)》(14)

[TOC](《Linux操作系统原理分析之存储管理》(14) 5 存储管理5.1 存储管理的目的和功能5.1.1 存储管理目的:5.1.2 存储管理的主要功能5.1.3 存储管理主要是对用户区进行管理 5.2 地址重定位5.2.1 作业的地址空间5.2.2.地址映射&…

企业微信小程序通知消息

使用企业微信发送应用消息中的小程序通知消息(只允许绑定了小程序的应用发送)。 目录 请求方式 请求地址 发送通知 参数说明 请求实例 返回 返回示例 返回参数说明 实现效果 总结 请求方式 POST 请求地址 https://qyapi.weixin.qq.com/cgi-b…

【EasyExcel实践】万能导出,一个接口导出多张表以及任意字段(可指定字段顺序)

文章目录 前言正文一、POM依赖二、核心Java文件2.1 自定义表头注解 ExcelColumnTitle2.2 自定义标题头的映射接口2.3 自定义有序map存储表内数据2.4 表头工厂2.5 表flag和表头映射枚举2.6 测试用的实体2.6.1 NameAndFactoryDemo2.6.2 StudentDemo 2.7 启动类2.8 测试控制器 三、…

关于UART、RS232、RS485的区别与理解

1、UART规定了数据的格式,但没有规定电气的特性,多少伏为高电平,多少伏为低电平。通常我们使用单片机与电脑通信时需要一个USB转TTL模块。 2、UART存在抗干扰能力差、通信距离短(一般不超过2~3m),由此产生基于串口的R…

2023 BUCT 计算方法实验报告

前言 Textlive版本:2023 textstudio版本:4.6.3 名字和日期在以下地方修改: 图片下载地址; figures.zip LiangCha_Xyy/Source - Gitee.com 如下图,.tex文件和figures文件夹放在同一路径下即可 .tex代码 \documentclass[UTF8]{ctexart} \usep…

Python数据分析从入门到进阶:模型评估和选择(含代码)

引言 之前我们介绍了机器学习的一些基础性工作,介绍了如何对数据进行预处理,接下来我们可以根据这些数据以及我们的研究目标建立模型。那么如何选择合适的模型呢?首先需要对这些模型的效果进行评估。本文介绍如何使用sklearn代码进行模型评估…

常见算法和Lambda表达式

常见算法和Lambda 常见算法 查找算法 基本查找 从0索引开始逐个查找 代码演示: package Search;import java.util.ArrayList;public class BasicSearch {public static void main(String[] args) {int[] arr {1,2,3,4,5,6,3,4,1,3};ArrayList<Integer> resArr ba…

第二证券:机构争分夺秒抢滩 金融大模型落地为时尚早

本年以来&#xff0c;大模型席卷金融业&#xff0c;一夜之间&#xff0c;简直悉数金融场景都在探索适配大模型接口。但是&#xff0c;志向丰满&#xff0c;实践骨感。有大型金融组织IT部分人士比方&#xff0c;金融大模型从战略规划到安顿落地&#xff0c;有着从“卖家秀”走到…

Docker 下载加速

文章目录 方式1&#xff1a;使用 网易数帆容器镜像仓库进行下载。方式2&#xff1a;配置阿里云加速。方式3&#xff1a;方式4&#xff1a;结尾注意 Docker下载加速的原理是&#xff0c;在拉取镜像时使用一个国内的镜像站点&#xff0c;该站点已经缓存了各个版本的官方 Docker 镜…

两台电脑如何快速传输几百G文件,这款文件传输软件真快

当我们需要传输数百GB的文件时&#xff0c;使用传统工具对于大型文件传输来说往往效率低下。这些方法可能需要数小时&#xff0c;甚至数天才能完成传输。然而&#xff0c;现代生活和工作中&#xff0c;我们经常需要以更快速、更高效的方式传输大文件&#xff0c;无论是因为工作…

连锁零售企业如何提高异地组网的稳定性?

随着数字化时代的到来&#xff0c;连锁零售企业面临着日益复杂和多样化的网络挑战。连锁零售企业是在不同地理位置拥有分支机构和零售店&#xff0c;可能同城或异地&#xff0c;需要确保各个地点之间的网络连接稳定和可靠。但由于不同地区的网络基础设施差异、网络延迟和带宽限…

应用密码学期末复习(3)

目录 第三章 现代密码学应用案例 3.1安全电子邮件方案 3.1.1 PGP产生的背景 3.2 PGP提供了一个安全电子邮件解决方案 3.2.1 PGP加密流程 3.2.2 PGP解密流程 3.2.3 PGP整合了对称加密和公钥加密的方案 3.3 PGP数字签名和Hash函数 3.4 公钥分发与认证——去中心化模型 …

【小布_ORACLE笔记】Part11-5 RMAN Backups

【小布_ORACLE笔记】Part11-5 RMAN Backups 文章目录 【小布_ORACLE笔记】Part11-5 RMAN Backups1. 增量备份&#xff08;Incremental Backups)1.1差异增量备份&#xff08;Differential Incremental Backup&#xff09;1.2累积增量备份&#xff08;Cumulative Incremental Bac…

跨界融合,科技耕耘:MTX基金公司与ICG共塑全球农业科技新景观

在全球经济快速发展的当下&#xff0c;农业科技创新成为了社会进步的重要推动力。MTX基金公司对ICG的投资是在这一背景下的战略决策&#xff0c;不仅寻求经济效益&#xff0c;更承载着改善全球农业生产、实现食品安全与环境保护的使命。 1、战略投资&#xff1a;文化情怀与全球…

Python三十个常见的脚本汇总

1、冒泡排序 2、计算x的n次方的方法 3、计算a*a b*b c*c …… 4、计算阶乘 n! 5、列出当前目录下的所有文件和目录名 6、把一个list中所有的字符串变成小写&#xff1a; 7、输出某个路径下的所有文件和文件夹的路径 8、输出某个路径及其子目录下的所有文件路径 9、输出某个路…

【刷题笔记】长度最小的子数组||二分查找||边界||数组

长度最小的子数组 1 题目描述 https://leetcode.cn/problems/minimum-size-subarray-sum/ 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, …, numsr-1, numsr] &#xff0c;并返回…

如何用管理项目的方式管理个人任务

同样一份工作&#xff0c;有的人做起来得心应手&#xff0c;条理清晰&#xff0c;有的人却是手忙脚乱&#xff0c;苦不堪言。在凡事皆项目的时代&#xff0c;用管理项目的方法管理自己的任务&#xff0c;可能会让你的工作事半功倍。 工欲善其事&#xff0c;必先利其器&#xf…

webshell之API免杀

ScriptEngineManager命令执行免杀 ScriptEngineManager执行js代码 利用ScriptEngineManager可以执行js命令&#xff0c;但是由于一般情况下&#xff0c;即便能运行js代码也不一定能执行系统命令。因为一般情况下js执行系统命令主要是依靠两种方式&#xff0c;IE的ActiveX插件…