软著项目推荐 深度学习卷积神经网络的花卉识别

news2025/1/20 7:06:36

文章目录

  • 0 前言
  • 1 项目背景
  • 2 花卉识别的基本原理
  • 3 算法实现
    • 3.1 预处理
    • 3.2 特征提取和选择
    • 3.3 分类器设计和决策
    • 3.4 卷积神经网络基本原理
  • 4 算法实现
    • 4.1 花卉图像数据
    • 4.2 模块组成
  • 5 项目执行结果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习卷积神经网络的花卉识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久,
是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。

花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境,
近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是重点观察花卉的花蕊特征、 花卉的纹理颜色和形状及其相关信息等。 然后在和现有的样本进行比对,
最终确定花卉的所属类别。

2 花卉识别的基本原理

花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。 经典的花卉识别设计如下图 所示,
这几个过程相互关联而又有明显区别。

在这里插入图片描述

3 算法实现

3.1 预处理

预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。 为了使实验结果更精准, 需要对图像数据进行预处理, 比如,
根据需要增强图像质量、 将图像裁剪成大小一致的形状、 避免不必要的失真等等。

3.2 特征提取和选择

要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。

特征提取旨在通过从现有特征中创建新特征(然后丢弃原始特征) 来减少数据集中的特征数量。 然后, 这些新的简化功能集应该能够汇总原始功能集中包含的大多数信息。
这样, 可以从原始集合的组合中创建原始特征的摘要版本。 对所获取的信息实现从测量空间到特征空间的转换。

3.3 分类器设计和决策

构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。 由于完美的分类性能通常是不可能实现的,
因此一般的任务是确定每种可能类别的概率。 输入数据的特征向量表示所提供的抽象使得能够开发出在尽可能大程度上与领域无关的分类理论。

在这里插入图片描述
在这里插入图片描述

在设计阶段, 决策功能必须重复多次, 直到错误达到特定条件为止。 分类决策是在分类器设计阶段基于预处理、 特征提取与选择及判决函数建立的模型,
对接收到的样本数据进行归类, 然后输出分类结果。

3.4 卷积神经网络基本原理

卷积神经网络是受到生物学启发的深度学习经典的多层前馈神经网络结构。 是一种在图像分类中广泛使用的机器学习算法。

CNN 的灵感来自我们人类实际看到并识别物体的方式。 这是基于一种方法,即我们眼睛中的神经元细胞只接收到整个对象的一小部分,而这些小块(称为接受场)
被组合在一起以形成整个对象。与其他的人工视觉算法不一样的是 CNN 可以处理特定任务的多个阶段的不变特征。
卷积神经网络使用的并不像经典的人工神经网络那样的全连接层, 而是通过采取局部连接和权值共享的方法, 来使训练的参数量减少, 降低模型的训练复杂度。

CNN 在图像分类和其他识别任务方面已经使传统技术的识别效果得到显著的改善。 由于在过去的几年中卷积网络的快速发展, 对象分类和目标检测能力取得喜人的成绩。

典型的 CNN 含有多个卷积层和池化层, 并具有全连接层以产生任务的最终结果。 在图像分类中, 最后一层的每个单元表示分类概率。

在这里插入图片描述

4 算法实现

4.1 花卉图像数据

花卉图像的获取除了通过用拍摄设备手工收集或是通过网络下载已经整理好的现有数据集, 还可以通过网络爬虫技术收集整理自己的数据集。

在这里插入图片描述

以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件

在这里插入图片描述

4.2 模块组成

示例代码主要由四个模块组成:

  • input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
  • model.py——模型模块,构建完整的CNN模型
  • train.py——训练模块,训练模型,并保存训练模型结果
  • test.py——测试模块,测试模型对图片识别的准确度

项目模块执行顺序

运行train.py开始训练。
训练完成后- 运行test.py,查看实际测试结果
input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List

import os
import math
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

# -----------------生成图片路径和标签的List------------------------------------
train_dir = 'D:/ML/flower/input_data'

roses = []
label_roses = []
tulips = []
label_tulips = []
dandelion = []
label_dandelion = []
sunflowers = []
label_sunflowers = []

定义函数get_files,获取图片列表及标签列表



    # step1:获取所有的图片路径名,存放到
    # 对应的列表中,同时贴上标签,存放到label列表中。
    def get_files(file_dir, ratio):
        for file in os.listdir(file_dir + '/roses'):
            roses.append(file_dir + '/roses' + '/' + file)
            label_roses.append(0)
        for file in os.listdir(file_dir + '/tulips'):
            tulips.append(file_dir + '/tulips' + '/' + file)
            label_tulips.append(1)
        for file in os.listdir(file_dir + '/dandelion'):
            dandelion.append(file_dir + '/dandelion' + '/' + file)
            label_dandelion.append(2)
        for file in os.listdir(file_dir + '/sunflowers'):
            sunflowers.append(file_dir + '/sunflowers' + '/' + file)
            label_sunflowers.append(3)
            # step2:对生成的图片路径和标签List做打乱处理
        image_list = np.hstack((roses, tulips, dandelion, sunflowers))
        label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))
    
        # 利用shuffle打乱顺序
        temp = np.array([image_list, label_list])
        temp = temp.transpose()
        np.random.shuffle(temp)


        # 将所有的img和lab转换成list
        all_image_list = list(temp[:, 0])
        all_label_list = list(temp[:, 1])
            # 将所得List分为两部分,一部分用来训练tra,一部分用来测试val
        # ratio是测试集的比例
        n_sample = len(all_label_list)
        n_val = int(math.ceil(n_sample * ratio))  # 测试样本数
        n_train = n_sample - n_val  # 训练样本数
    
        tra_images = all_image_list[0:n_train]
        tra_labels = all_label_list[0:n_train]
        tra_labels = [int(float(i)) for i in tra_labels]
        val_images = all_image_list[n_train:-1]
        val_labels = all_label_list[n_train:-1]
        val_labels = [int(float(i)) for i in val_labels]
    
        return tra_images, tra_labels, val_images, val_labels



定义函数get_batch,生成训练批次数据

# --------------------生成Batch----------------------------------------------

# step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab
# 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像
#   image_W, image_H, :设置好固定的图像高度和宽度
#   设置batch_size:每个batch要放多少张图片
#   capacity:一个队列最大多少
定义函数get_batch,生成训练批次数据
def get_batch(image, label, image_W, image_H, batch_size, capacity):
    # 转换类型
    image = tf.cast(image, tf.string)
    label = tf.cast(label, tf.int32)

    # make an input queue
    input_queue = tf.train.slice_input_producer([image, label])

    label = input_queue[1]
    image_contents = tf.read_file(input_queue[0])  # read img from a queue

    # step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。
    image = tf.image.decode_jpeg(image_contents, channels=3)
        # step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。
    image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
    image = tf.image.per_image_standardization(image)

    # step4:生成batch
    # image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32
    # label_batch: 1D tensor [batch_size], dtype=tf.int32
    image_batch, label_batch = tf.train.batch([image, label],
                                              batch_size=batch_size,
                                              num_threads=32,
                                              capacity=capacity)
    # 重新排列label,行数为[batch_size]
    label_batch = tf.reshape(label_batch, [batch_size])
    image_batch = tf.cast(image_batch, tf.float32)
    return image_batch, label_batch

model.py——CN模型构建



    import tensorflow as tf
    
    #定义函数infence,定义CNN网络结构
    #卷积神经网络,卷积加池化*2,全连接*2,softmax分类
    #卷积层1
    def inference(images, batch_size, n_classes):
        with tf.variable_scope('conv1') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),
                                 name = 'weights',dtype=tf.float32)
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),
                                 name='biases', dtype=tf.float32)
            conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv1 = tf.nn.relu(pre_activation, name=scope.name)
    
        # 池化层1
        # 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。


        with tf.variable_scope('pooling1_lrn') as scope:
            pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')
            norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
    
        # 卷积层2
        # 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()
        with tf.variable_scope('conv2') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),
                                 name='biases', dtype=tf.float32)
    
            conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv2 = tf.nn.relu(pre_activation, name='conv2')
    
        # 池化层2
        # 3x3最大池化,步长strides为2,池化后执行lrn()操作,
        # pool2 and norm2
        with tf.variable_scope('pooling2_lrn') as scope:
            norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
            pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')
    
        # 全连接层3
        # 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()
        with tf.variable_scope('local3') as scope:
            reshape = tf.reshape(pool2, shape=[batch_size, -1])
            dim = reshape.get_shape()[1].value
            weights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),
                                 name='biases', dtype=tf.float32)
    
            local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    
        # 全连接层4
        # 128个神经元,激活函数relu()
        with tf.variable_scope('local4') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),
                                 name='biases', dtype=tf.float32)
    
            local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
    
        # dropout层
        #    with tf.variable_scope('dropout') as scope:
        #        drop_out = tf.nn.dropout(local4, 0.8)
    
        # Softmax回归层
        # 将前面的FC层输出,做一个线性回归,计算出每一类的得分
        with tf.variable_scope('softmax_linear') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),
                                  name='softmax_linear', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),
                                 name='biases', dtype=tf.float32)
    
            softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
    
        return softmax_linear


    # -----------------------------------------------------------------------------
    # loss计算
    # 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1
    # 返回参数:loss,损失值
    def losses(logits, labels):
        with tf.variable_scope('loss') as scope:
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,
                                                                           name='xentropy_per_example')
            loss = tf.reduce_mean(cross_entropy, name='loss')
            tf.summary.scalar(scope.name + '/loss', loss)
        return loss


    # --------------------------------------------------------------------------
    # loss损失值优化
    # 输入参数:loss。learning_rate,学习速率。
    # 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。
    def trainning(loss, learning_rate):
        with tf.name_scope('optimizer'):
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
            global_step = tf.Variable(0, name='global_step', trainable=False)
            train_op = optimizer.minimize(loss, global_step=global_step)
        return train_op


    # -----------------------------------------------------------------------
    # 评价/准确率计算
    # 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。
    # 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。
    def evaluation(logits, labels):
        with tf.variable_scope('accuracy') as scope:
            correct = tf.nn.in_top_k(logits, labels, 1)
            correct = tf.cast(correct, tf.float16)
            accuracy = tf.reduce_mean(correct)
            tf.summary.scalar(scope.name + '/accuracy', accuracy)
        return accuracy



train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练

import input_data
import model

# 变量声明
N_CLASSES = 4  # 四种花类型
IMG_W = 64  # resize图像,太大的话训练时间久
IMG_H = 64
BATCH_SIZE = 20
CAPACITY = 200
MAX_STEP = 2000  # 一般大于10K
learning_rate = 0.0001  # 一般小于0.0001

# 获取批次batch
train_dir = 'F:/input_data'  # 训练样本的读入路径
logs_train_dir = 'F:/save'  # logs存储路径

# train, train_label = input_data.get_files(train_dir)
train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)
# 训练数据及标签
train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
# 测试数据及标签
val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)

# 训练操作定义
train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
train_loss = model.losses(train_logits, train_label_batch)
train_op = model.trainning(train_loss, learning_rate)
train_acc = model.evaluation(train_logits, train_label_batch)

# 测试操作定义
test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)
test_loss = model.losses(test_logits, val_label_batch)
test_acc = model.evaluation(test_logits, val_label_batch)

# 这个是log汇总记录
summary_op = tf.summary.merge_all()

# 产生一个会话
sess = tf.Session()
# 产生一个writer来写log文件
train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
# val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)
# 产生一个saver来存储训练好的模型
saver = tf.train.Saver()
# 所有节点初始化
sess.run(tf.global_variables_initializer())
# 队列监控
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)

# 进行batch的训练
try:
    # 执行MAX_STEP步的训练,一步一个batch
    for step in np.arange(MAX_STEP):
        if coord.should_stop():
            break
        _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])

        # 每隔50步打印一次当前的loss以及acc,同时记录log,写入writer
        if step % 10 == 0:
            print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
            summary_str = sess.run(summary_op)
            train_writer.add_summary(summary_str, step)
        # 每隔100步,保存一次训练好的模型
        if (step + 1) == MAX_STEP:
            checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
            saver.save(sess, checkpoint_path, global_step=step)

except tf.errors.OutOfRangeError:
    print('Done training -- epoch limit reached')

finally:
    coord.request_stop()

test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果



    import matplotlib.pyplot as plt
    import model
    from input_data import get_files
    
    # 获取一张图片
    def get_one_image(train):
        # 输入参数:train,训练图片的路径
        # 返回参数:image,从训练图片中随机抽取一张图片
        n = len(train)
        ind = np.random.randint(0, n)
        img_dir = train[ind]  # 随机选择测试的图片
    
        img = Image.open(img_dir)
        plt.imshow(img)
        plt.show()
        image = np.array(img)
        return image


    # 测试图片
    def evaluate_one_image(image_array):
        with tf.Graph().as_default():
            BATCH_SIZE = 1
            N_CLASSES = 4
    
            image = tf.cast(image_array, tf.float32)
            image = tf.image.per_image_standardization(image)
            image = tf.reshape(image, [1, 64, 64, 3])
    
            logit = model.inference(image, BATCH_SIZE, N_CLASSES)
    
            logit = tf.nn.softmax(logit)
    
            x = tf.placeholder(tf.float32, shape=[64, 64, 3])
    
            # you need to change the directories to yours.
            logs_train_dir = 'F:/save/'
    
            saver = tf.train.Saver()
    
            with tf.Session() as sess:
    
                print("Reading checkpoints...")
                ckpt = tf.train.get_checkpoint_state(logs_train_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    print('Loading success, global_step is %s' % global_step)
                else:
                    print('No checkpoint file found')
    
                prediction = sess.run(logit, feed_dict={x: image_array})
                max_index = np.argmax(prediction)
                if max_index == 0:
                    result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])
                elif max_index == 1:
                    result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])
                elif max_index == 2:
                    result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])
                else:
                    result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])
                return result


    # ------------------------------------------------------------------------
    
    if __name__ == '__main__':
        img = Image.open('F:/input_data/dandelion/1451samples2.jpg')
        plt.imshow(img)
        plt.show()
        imag = img.resize([64, 64])
        image = np.array(imag)
        print(evaluate_one_image(image))


5 项目执行结果

执行train模块,结果如下:
在这里插入图片描述
同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
在这里插入图片描述

执行test模块,结果如下:

在这里插入图片描述
关闭显示的测试图片后,console查看测试结果如下:
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1269116.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JVM——产生内存溢出原因

目录 1.产生内存溢出原因一 :代码中的内存泄漏1.案例1:equals()和hashCode()导致的内存泄漏问题:**正常情况**:**异常情况:**解决方案: 2.案例2:内部类引用外部类问题:解决方案&…

振南技术干货集:各大平台串口调试软件大赏(2)

注解目录 (串口的重要性不言而喻。为什么很多平台把串口称为 tty,比如 Linux、MacOS 等等,振南告诉你。) 1、各平台上的串口调试软件 1.1Windows 1.1.1 STCISP (感谢 STC 姚老板设计出 STCISP 这个软件。&#xf…

MySQL 中的锁(一)

MySQL 中的锁 按照 MySQL 官方的说法,InnoDB 中锁可以分为: 可见,InnoDB 中锁非常多,总的来说,可以如下分类: 这些锁都是做什么的?具体含义是什么?我们现在来一一学习。 8.1. 解…

Nginx性能调优策略

Nginx是一个高性能的Web服务器和反向代理服务器,常用于处理高并发的请求。以下是一些常见的Nginx性能调优策略: 一、调整worker_processes和worker_connections 在Nginx配置文件中,可以通过worker_processes和worker_connections参数来调整w…

CLIPTokenizer.from_pretrained本地加载

以"openai/clip-vit-large-patch14"为例,原代码为: self.tokenizer CLIPTokenizer.from_pretrained(“openai/clip-vit-large-patch14”) self.transformer CLIPTextModel.from_pretrained(“openai/clip-vit-large-patch14”) 但我连不到外…

ArkTS-取消标题与自定义标题栏

文章目录 取消标头自定义标题栏导入Resources自定义跳转动画关于底部tabBar导航文本输入(TextInput/TextArea)自定义样式添加事件可以是onChange可以是onSubmit List列表组件设置主轴方向 网格布局服务卡片-获取地理位置页面获取地理位置服务卡片获取地理位置 可以先看看&#…

移民同步进行|企业高管自费赴美国奥本大学访学

K经理申请了美国杰出人才移民,已经获批I-140,正在排期中,尚未获得绿卡。为了使孩子同步美国学制,K经理希望先以访问学者身份带孩子出国接受免费公立教育。最终我们落实了奥本大学的职位,申请人及孩子顺利获签出国&…

VSCODE+QEMU+WSL调试RISCV代码(SBI、kernel)

前言 最近在对RISC-V架构比较感兴趣,正好手头有《RISC-V体系结构编程与实践》的书籍,就打算跟随笨叔将这块的知识学习起来,最开始当然是需要搭建一个基础的实验平台,本来笨叔是贴心的提供了VMare的环境,奈何天生叛逆的…

Matlab下载许可证文件 教程(在账号有许可证的前提下)

文章目录 Part.I IntroductionPart.II 许可证文件过期解决方案Chap.I 使用 Internet 自动激活Chap.II 在不使用 Internet 的情况下手动激活 Part.I Introduction 本文主要介绍,在 Mathwork 账号有许可证的前提下,下载许可证的操作流程。 好久没有用 Mat…

OSCP系列靶场-Esay-1

总结 getwebshell : ftp可匿名登录 → 发现隐藏文件夹 → 发现ssh密钥 → 猜解ssh用户名 → ssh密钥登录 提 权 思 路 : 发现suid权限文件 → cpulimit提权 准备工作 启动VPN 获取攻击机IP → 192.168.45.191 启动靶机 获取目标机器IP → 192.168.179.130 信息收集-端口扫…

Android自定义瀑布流文字展示

在历史搜索功能中&#xff0c;我们常用到一个瀑布流展示控件&#xff0c;用来展示我们的搜索记录&#xff0c;所以就自定义一个吧&#xff01; 布局中代码示例 <com.example.mymodularization.measure.LinearCustomandroid:id"id/ll"android:layout_width"wr…

基于深度学习的点云三维目标检测方法综述

论文标题&#xff1a;基于深度学习的点云三维目标检测方法综述 作者&#xff1a;郭毅锋&#xff11;&#xff0c;&#xff12;†&#xff0c;吴帝浩&#xff11;&#xff0c;魏青民&#xff11; 发表日期&#xff1a; 2023 1 阅读日期 &#xff1a;2023 11 29 研究背景&…

一、Gradle 手动创建一个项目

文章目录 Gradle 介绍Gradle Wrapper Gradle 使用手动安装 Gradle初始化 Gradle 介绍 Gradle 是一个快速的、可信的、适应性强的自动化构建工具&#xff0c;它是开源的。它使用优雅的并且可扩展的描述性语言。其他的介绍在官网可以了解。 Gradle Wrapper 官方建议使用 Gradl…

vue3实现元素拖拽移动功能

效果图 实现拖拽移动 首先我们给需要实现功能的元素加一个draggable"true"让元素能够被拖拽 先来认识两个搭配draggable属性一起使用的事件——ondragstart和ondragend&#xff0c;它们的定义分别为&#xff1a; ①. ondragstart 事件在用户开始拖动元素或选择的文…

Python中使用matplotlib库绘图中如何给图形的图例设置中文字体显示

问题&#xff1a;当使用matplotlib绘图时遇到绘图&#xff0c;图例显示不出来中文字体 解决方式&#xff1a; 1&#xff09;加载字体管理库 from matplotlib.font_manager import FontProperties 2&#xff09;设置系统上字体的路径 font FontProperties(fname"C:\\W…

docker搭建node环境开发服务器

docker搭建node环境开发服务器 本文章是我自己搭建node环境开发服务器的过程记录&#xff0c;不一定完全适用所有人。根据个人情况&#xff0c;按需取用。 命名项目路径 为了方便cd到项目路径&#xff0c;将项目路径重命名&#xff0c;方便输入。 vim /etc/profile # 修改p…

Linux 下命令行启动与关闭WebLogic的相关服务

WebLogic 的服务器类型 WebLogic提供了三种类型的服务器&#xff1a; 管理服务器节点服务器托管服务器 示例和关系如下图&#xff1a; 对应三类服务器&#xff0c; 就有三种启动和关闭的方式。本篇介绍使用命令行脚本的方式启动和关闭这三种类型的服务器。 关于WebLogic 的…

如何通过“闻香”给葡萄酒分类?

有句话叫做“闻香识女人”&#xff0c;葡萄酒也如同美女&#xff0c;千娇百媚风情万种&#xff0c;所以通过“闻香”也可以给葡萄酒进行分类。 那么&#xff0c;云仓酒庄的品牌雷盛红酒分享葡萄酒都有哪些不同的香呢&#xff1f; 云仓酒庄是云仓酒庄的结合&#xff0c;也就是在…

深入了解Java8新特性-日期时间API之ZonedDateTime类

阅读建议 嗨&#xff0c;伙计&#xff01;刷到这篇文章咱们就是有缘人&#xff0c;在阅读这篇文章前我有一些建议&#xff1a; 本篇文章大概19000多字&#xff0c;预计阅读时间长需要10分钟以上。本篇文章的实战性、理论性较强&#xff0c;是一篇质量分数较高的技术干货文章&…

群晖安装portainer

一、下载镜像 打开【Container Manager】 ,搜索portainer&#xff0c;双击【6053537/portainer-ce】下载汉化版本 二、创建映射文件夹 打开【File Station】&#xff0c;在docker目录下创建【portainer】文件夹 三、开启SSH 群晖 - 【控制面板】-【终端机和SNMP】 勾选【启动…