c语言-数据在内存中的存储

news2025/1/12 23:16:39

文章目录

    • 1. 整数在内存中的存储
    • 2. 大小端字节序和字节序判断
    • 3. 浮点数在内存中的存储


1. 整数在内存中的存储

1.整数的2进制表示方法有三种,即 原码、反码和补码
2. 三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最高位的一位是被当做符号位,剩余的都是数值位。
3. 存储时存储的是补码,取出的时取出的原码

如:
在这里插入图片描述
正负数的原码、反码、补码转换

正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。 原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。 反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。 补码:反码+1就得到补码。
补码转换原码,将上述过程反过来即可 :补码-1得到反码,反码符号位不变,其他位依次按位取反就可以得到原码了

如,存储int类型 -1,和1
在这里插入图片描述

对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?
在计算机系统中,数值⼀律用补码来表⽰和存储。
原因在于,使用补码,可以将符号位和数值域统⼀处理;同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

无符号类型:
即将符号位去掉,将所有位当数值位
在这里插入图片描述
无符号位的原码、反码、补码相同
如:unsigned int 1 、-1
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/c2af36d05c584bf8a32a5ccef41f35ea.png

2. 大小端字节序和字节序判断

什么是大小端?

其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分
为大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式:是指数据的低位字节内容保存在内存的⾼地址处,而数据的⾼位字节内容,保存 在内存的低地址处。
小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的⾼位字节内容,保存 在内存的高地址处。

为什么有大小端?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8 bit 位,但是在C语⾔中除了8 bit 的> char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看 具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度⼤ 于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了⼤端存储模式和⼩端存 储模式。
例如:⼀个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为⾼字节, 0x22 为低字节。对于⼤端模式,就将0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常⽤的 X86结构是小端模式,⽽ KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

例:
如何存储0x11223344

int main() {
	int a = 0x11223344;
	return 0;
}

在这里插入图片描述
练习:
设计⼀个小程序来判断当前机器的字节序

1.大端和小端的区别在于存储的字节序
2.我们只需要取低地址的一个字节就可以观察是大端还是小端了

代码实现:

#include <stdio.h>
int check_sys()
{
 int i = 1;//设置i=1,只观察第一个字节
 return (*(char *)&i);//强制类型将&i转为char*(为了只取第一个字节),再解引用得到第一个字节的内容
}
int main()
{
 int ret = check_sys();//调用函数,看返回值
 if(ret == 1)
 {
 printf("⼩端\n");
 }
 else
 {
 printf("⼤端\n");
 }
 return 0;
 }

3. 浮点数在内存中的存储

**1.常见的浮点数:**3.14159、1E10等,浮点数家族包括: float、double、long double 类型。
浮点数表示的范围: float.h 中定义

2.浮点数的存储
根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个⼆进制浮点数V可以表示成下面的形式:
V = (−1) ∗ S M ∗ 2E
• (−1)S 表示符号位,当S=0,V为正数;当S=1,V为负数
• M 表示有效数字,M是大于等于1,小于2的
• 2^E 表示指数位
举例来说:
在这里插入图片描述

IEEE 754规定:

对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

float类型浮点数内存分配
在这里插入图片描述

double类型浮点数内存分配
在这里插入图片描述

3. 浮点数存的过程
IEEE 754 对有效数字M和指数E,还有⼀些特别规定。

前⾯说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示数部分。 IEEE 754
规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保 存24位有效数字。

至于指数E,情况就比较复杂

首先,E为⼀个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0-255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE
754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

我们将上述例子存储起来:
假设5.5是float类型
在这里插入图片描述
M的首位可以省略掉,存储小数点后面的数即可
4.浮点数取的过程

S ->判断正负
M->按存储时候的顺序取出,并前面加1,如上面的例子:.011,然后再在前面加1->M=1.011
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效 数字前加上第⼀位的1。 比如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其 阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位
00000000000000000000000,则其⼆进制表示形式为:0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。 如:0 0000000000100000000000000000000
E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s) 如:0 11111111 00010000000000000000000

5.精度问题
在存储一个浮点数时,由于存储的比特位是有限的,fioat-23位,double-52位,一旦超过这个位数就会出现精度丢失的问题
如:打印99.7时

int main() {
	float a = 99.7;
	printf("%f", a);
	return 0;
}

运行结果:
在这里插入图片描述
丢失了一些数据。
总结:

(1)有些浮点数在内存中无法精确保存
(2)double精度一定比float的高
(3)浮点数在比较时可能会出现问题

练习:

#include <stdio.h>
int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0;}

输出的结果是什么?
在这里插入图片描述

解析:
在这里插入图片描述

以上就是我的分享了,如果有什么错误,欢迎在评论区留言。
最后,谢谢大家的观看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1266897.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【开发实践】使用jstree实现文件结构目录树

一、需求分析 因开发系统的需要&#xff0c;维护服务端导出文件的目录结构。因此&#xff0c;需要利用jstree&#xff0c;实现前端对文件结构目录的展示。 【预期效果】&#xff1a; 二、需求实现 【项目准备】&#xff1a; jstree在线文档&#xff1a;jstree在线文档地址 …

Python基础语法之学习表达式进行符串格式化

Python基础语法之学习表达式进行符串格式化 一、代码二、效果 一、代码 print("11等于%d" % (1 1)) print(f"2/1等于{2 / 1}") print("字符串类型是%s" % type("字符串"))二、效果 坚持追求自己的梦想&#xff0c;即使道路漫长曲折&…

网络和Linux网络_6(应用层)HTTPS协议(加密解密+中间人攻击+证书)

目录 1. HTTPS协议介绍 1.1 加密解密和秘钥的概念 1. 2 为什么要加密 2. 对称加密和非对称加密 2.1 只使用对称加密 2.2 只使用非对称加密 2.3 双方都使用非对称加密 2.4 使用非对称加密对称加密 2.5 中间人攻击MITM 3. 证书的概念和HTTPS的通信方式 3.1 CA认证机构…

手把手教你Autodl平台Qwen-7B-Chat FastApi 部署调用

手把手带你在AutoDL上部署Qwen-7B-Chat FastApi 调用 项目地址&#xff1a;https://github.com/datawhalechina/self-llm.git 如果大家有其他模型想要部署教程&#xff0c;可以来仓库提交issue哦~ 也可以自己提交PR&#xff01; 如果觉得仓库不错的话欢迎star&#xff01;&…

【ASP.NET CORE】.NET 6.0 NET CORE MVC连接SQLSERVER数据库

项目装NuGet包&#xff0c;具体版本如下 在appsettings.json中&#xff0c;添加连接字符串 代码如下&#xff1a; "ConnectionStrings": {"MVCSqlContext": "Serverlocalhost;DatabaseAddress;User IDsa;Passwordsa;TrustServerCertificatetrue&q…

西南科技大学信号与系统A实验三(线性连续时间系统的分析)

一、实验目的 1.掌握用 matlab 分析系统时间响应的方法 2.掌握用 matlab 分析系统频率响应的方法 3.掌握系统零、极点分布与系统稳定性关系 二、实验原理 1. 系统函数 H(s) 系统函数:系统零状态响应的拉氏变换与激励的拉氏变换之比. H(s)=R(s)/E(s) 在 matlab 中可采用…

Vue2或者uniapp 中 使用 iframe 嵌入本地 HTML 页面 并 相互通信。

1.使用 iframe 嵌入本地 HTML 页面&#xff08;以pdfjs为例&#xff09; 在 public 文件夹下新建 static 文件夹&#xff0c;然后将 html 文件及相关引用拷贝到 static 文件夹下 uniapp在src下新建hybrid文件 vue 文件完整代码 <template><div class"wrap&q…

最佳实践| 一文读懂《MongoDB 使用规范及最佳实践》原理

最佳实践| 一文读懂《MongoDB 使用规范及最佳实践》原理 一、MongoDB 使用规范与限制 MongoDB 灵活文档的优势 灵活库/集合命名及字段增减同一字段可存储不同类型数据Json 文档可多层次嵌套文档对于开发而言最自然的表达 MongoDB 灵活文档的烦恼 数据库集合字段名千奇百怪…

notepad++ 插件JSONView安装

1&#xff0c;前提 开发过程中经常需要处理json格式语句&#xff0c;需要对json数据格式化处理&#xff0c;因为使用的是虚拟机内开发&#xff0c;所以没法连接外网&#xff0c;只能在本地电脑下载插件后&#xff0c;然后上传到虚拟机中&#xff0c;进行安装使用。 2&#xf…

鸿蒙(HarmonyOS)应用开发——应用程序入口UIAbility

概述 UIAbility是一种包含用户界面的应用组件&#xff0c;主要用于和用户进行交互 UIAbility是系统调度的单元&#xff0c;为应用提供窗口在其中绘制界面 应用程序的几种交互界面形式 点击桌面图标进入应用 一个应用拉起另一个应用 最近任务列表切回应用 每一个UI Abili…

【蓝桥杯选拔赛真题27】C++近似值 第十三届蓝桥杯青少年创意编程大赛C++编程选拔赛真题解析

目录 C/C++近似值 一、题目要求 1、编程实现 2、输入输出 二、算法分析

LeetCode.19删除链表的倒数第N个节点(双指针,基本法)

LeetCode.19删除链表的倒数第N个节点 1.问题描述2.解题思路3.代码 1.问题描述 给你一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], n 2 输出&#xff1a;[1,2,3,5]示例 2&#x…

5V摄像机镜头驱动IC GC6208,可用于摄像机,机器人等产品中可替代AN41908

GC6208是一个镜头电机驱动IC摄像机和安全摄像机。该设备集成了一个直流电机驱动器的Iris的PID控制系统&#xff0c;也有两个通道的STM电机驱动器的变焦和对焦控制。 芯片的特点: 内置用于Iris控制器的直流电机驱动器 内置2个STM驱动程序&#xff0c;用于缩放和…

添加通信作者标记、共同作者标记

1 添加通信作者的小信封 添加包&#xff0c;2个小信息长得不太一样选一个用 % \usepackage[misc]{ifsym} \usepackage{marvosym} % 通信小信封 然后在名字后面添加\Letter Ming Li\Letter\textsuperscript{\rm 1}\

海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(2)

本篇是在海思嵌入式芯片中移植yolov7和yolov8的第二篇。做一个调试的小总结。 目前手上有SS928还有Hi3516dv500两个板子&#xff0c;3519DV500板子还没开始调。Hi3519dv500和3516是同一套SDK&#xff0c;基本上是一样的&#xff0c;算力稍高一点&#xff0c;ARM主频高一点。 我…

Python自动化测试工具selenium使用指南

概述 selenium是网页应用中最流行的自动化测试工具&#xff0c;可以用来做自动化测试或者浏览器爬虫等。官网地址为&#xff1a;selenium。相对于另外一款web自动化测试工具QTP来说有如下优点&#xff1a; 免费开源轻量级&#xff0c;不同语言只需要一个体积很小的依赖包支持…

【性能测试】服务器常用的性能指标总结,一文概全...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 压测过程中&#…

基于docker的onlyoffice使用--运行JavaSpringExample

背景 我之前看到有开源项目很好地集成了onlyoffice&#xff0c;效果要比kkfilepreview好&#xff08;应当说应用场景不太一样&#xff09;。本文是在window10环境&#xff0c;安装完Docker Desktop的基础上运行onlyoffice&#xff0c;并利用官网JavaSpringExample进行了集成。 …

【古月居《ros入门21讲》学习笔记】09_订阅者Subscriber的编程实现

目录 说明&#xff1a; 1. 话题模型 图示 说明 2. 实现过程&#xff08;C&#xff09; 创建订阅者代码&#xff08;C&#xff09; 配置发布者代码编译规则 编译并运行 编译 运行 3. 实现过程&#xff08;Python&#xff09; 创建订阅者代码&#xff08;Python&…

【SpringBoot篇】登录校验 — JWT令牌

文章目录 &#x1f339;简述JWT令牌⭐JWT特点 &#x1f33a;JWT使用流程&#x1f6f8;JWT令牌代码实现&#x1f354;JWT应用 &#x1f339;简述JWT令牌 JWT全称为JSON Web Token&#xff0c;是一种用于身份验证的开放标准。它是一个基于JSON格式的安全令牌&#xff0c;主要用于…