【C++初阶(九)】 priority_queue的使用与模拟实现

news2024/12/24 3:27:03

本专栏内容为:C++学习专栏,分为初阶和进阶两部分。 通过本专栏的深入学习,你可以了解并掌握C++。

💓博主csdn个人主页:小小unicorn
⏩专栏分类:C++
🚚代码仓库:小小unicorn的代码仓库🚚
🌹🌹🌹关注我带你学习编程知识

C++初阶(九)

  • priority_queue的使用
    • priority_queue的介绍
    • priority_queue的定义方式
    • priority_queue的介绍
    • priority_queue各个接口使用
  • priority_queue的模拟实现
    • 堆的向上调整法
    • 堆的向下调整法
  • 建堆时间复杂度:
    • priority_queue的模拟实现

priority_queue的使用

priority_queue的介绍

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中的元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。

注意: 默认情况下priority_queue是大堆

priority_queue的定义方式

priority_queue的介绍

方式一: 使用vector作为底层容器,内部构造大堆结构。

priority_queue<int, vector<int>, less<int>> q1;

方式二: 使用vector作为底层容器,内部构造小堆结构。

priority_queue<int, vector<int>, greater<int>> q2;

方式三: 不指定底层容器和内部需要构造的堆结构。

priority_queue<int> q;

注意: 此时默认使用vector作为底层容器,内部默认构造大堆结构

priority_queue各个接口使用

priority_queue的各个成员函数及其功能如下:
在这里插入图片描述
使用示例:

#include <iostream>
#include <functional>
#include <queue>

using namespace std;
int main()
{
	priority_queue<int> q;
	q.push(3);
	q.push(6);
	q.push(0);
	q.push(2);
	q.push(9);
	q.push(8);
	q.push(1);
	while (!q.empty())
	{
		cout << q.top() << " ";
		q.pop();
	}
	cout << endl; //9 8 6 3 2 1 0
	return 0;
}

在这里插入图片描述

priority_queue的模拟实现

priority_queue的底层实际上就是堆结构,实现priority_queue之前,我们先认识两个重要的堆算法。(下面这两种算法我们均以大堆为例)

堆的向上调整法

当我们在一个堆的末尾插入一个数据后,需要对堆进行调整,使其仍然是一个堆,这时需要用到堆的向上调整算法。
在这里插入图片描述
向上调整算法的基本思想(以建小堆为例):
 1.将目标结点与其父结点比较。
 2.若目标结点的值比其父结点的值小,则交换目标结点与其父结点的位置,并将原目标结点的父结点当作新的目标结点继续进行向上调整。若目标结点的值比其父结点的值大,则停止向上调整,此时该树已经是小堆了。

在这里插入图片描述
代码如下:

//交换函数
void Swap(HPDataType* x, HPDataType* y)
{
	HPDataType tmp = *x;
	*x = *y;
	*y = tmp;
}

//堆的向上调整(小堆)
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)//调整到根结点的位置截止
	{
		if (a[child] < a[parent])//孩子结点的值小于父结点的值
		{
			//将父结点与孩子结点交换
			Swap(&a[child], &a[parent]);
			//继续向上进行调整
			child = parent;
			parent = (child - 1) / 2;
		}
		else//已成堆
		{
			break;
		}
	}
}

堆的向下调整法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。
在这里插入图片描述
但是:向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

1.若想将其调整为小堆,那么根结点的左右子树必须都为小堆。
2.若想将其调整为大堆,那么根结点的左右子树必须都为大堆。

在这里插入图片描述

向下调整算法的基本思想(以建小堆为例):
 1.从根结点处开始,选出左右孩子中值较小的孩子。
 2.让小的孩子与其父亲进行比较。

 若小的孩子比父亲还小,则该孩子与其父亲的位置进行交换。并将原来小的孩子的位置当成父亲继续向下进行调整,直到调整到叶子结点为止。

 若小的孩子比父亲大,则不需处理了,调整完成,整个树已经是小堆了。

代码如下:

//交换函数
void Swap(int* x, int* y)
{
	int tmp = *x;
	*x = *y;
	*y = tmp;
}

//堆的向下调整(小堆)
void AdjustDown(int* a, int n, int parent)
{
	//child记录左右孩子中值较小的孩子的下标
	int child = 2 * parent + 1;//先默认其左孩子的值较小
	while (child < n)
	{
		if (child + 1 < n&&a[child + 1] < a[child])//右孩子存在并且右孩子比左孩子还小
		{
			child++;//较小的孩子改为右孩子
		}
		if (a[child] < a[parent])//左右孩子中较小孩子的值比父结点还小
		{
			//将父结点与较小的子结点交换
			Swap(&a[child], &a[parent]);
			//继续向下进行调整
			parent = child;
			child = 2 * parent + 1;
		}
		else//已成堆
		{
			break;
		}
	}
}

使用堆的向下调整算法,最坏的情况下(即一直需要交换结点),需要循环的次数为:h - 1次(h为树的高度)。而h = log2(N+1)(N为树的总结点数)。所以堆的向下调整算法的时间复杂度为:O(logN)

上面说到,使用堆的向下调整算法需要满足其根结点的左右子树均为大堆或是小堆才行,那么如何才能将一个任意树调整为堆,我们只需要从倒数第一个非叶子结点开始,从后往前,按下标,依次作为根去向下调整即可。
在这里插入图片描述
代码如下:

	//建堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(php->a, php->size, i);
	}

建堆时间复杂度:

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
在这里插入图片描述
利用错位相减法进行计算:
在这里插入图片描述
因此:建堆的时间复杂度为O(N)

总结:
堆的向下调整算法的时间复杂度:T(n)=O(logN)。
建堆的时间复杂度:T(n)=O(N)。

priority_queue的模拟实现

只要知道了堆的向上调整算法和堆的向下调整算法,priority_queue的模拟实现就没什么困难了。
在这里插入图片描述
priority_queue的模拟实现代码:

namespace NIC //防止命名冲突
{
	//比较方式(使内部结构为大堆)
	template<class T>
	struct less
	{
		bool operator()(const T& x, const T& y)
		{
			return x < y;
		}
	};
	//比较方式(使内部结构为小堆)
	template<class T>
	struct greater
	{
		bool operator()(const T& x, const T& y)
		{
			return x > y;
		}
	};
	//优先级队列的模拟实现
	template<class T, class Container = vector<T>, class Compare = less<T>>
	class priority_queue
	{
	public:
		//堆的向上调整
		void AdjustUp(int child)
		{
			int parent = (child - 1) / 2; //通过child计算parent的下标
			while (child > 0)//调整到根结点的位置截止
			{
				if (_comp(_con[parent], _con[child]))//通过所给比较方式确定是否需要交换结点位置
				{
					//将父结点与孩子结点交换
					swap(_con[child], _con[parent]);
					//继续向上进行调整
					child = parent;
					parent = (child - 1) / 2;
				}
				else//已成堆
				{
					break;
				}
			}
		}
		//插入元素到队尾(并排序)
		void push(const T& x)
		{
			_con.push_back(x);
			AdjustUp(_con.size() - 1); //将最后一个元素进行一次向上调整
		}
		//堆的向下调整
		void AdjustDown(int n, int parent)
		{
			int child = 2 * parent + 1;
			while (child < n)
			{
				if (child + 1 < n && _comp(_con[child], _con[child + 1]))
				{
					child++;
				}
				if (_comp(_con[parent], _con[child]))//通过所给比较方式确定是否需要交换结点位置
				{
					//将父结点与孩子结点交换
					swap(_con[child], _con[parent]);
					//继续向下进行调整
					parent = child;
					child = 2 * parent + 1;
				}
				else//已成堆
				{
					break;
				}
			}
		}
		//弹出队头元素(堆顶元素)
		void pop()
		{
			swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();
			AdjustDown(_con.size(), 0); //将第0个元素进行一次向下调整
		}
		//访问队头元素(堆顶元素)
		T& top()
		{
			return _con[0];
		}
		const T& top() const
		{
			return _con[0];
		}
		//获取队列中有效元素个数
		size_t size() const
		{
			return _con.size();
		}
		//判断队列是否为空
		bool empty() const
		{
			return _con.empty();
		}
	private:
		Container _con; //底层容器
		Compare _comp; //比较方式
	};
}

测试一下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1263379.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vscode 里怎么自动提示 webpack 配置项?

webpack 的配置项非常多&#xff0c;容易忘记&#xff0c;能自动提示很有用&#xff0c;就是在配置文件里面添加下面代码 // 下面这行用于 vscode 中智能化自动提示 webpack 配置项 /** type {import(webpack).Configuration} */

学习知识回顾随笔(远程连接MySQL|远程访问Django|HTTP协议|Web框架)

文章目录 如何远程连接MySQL数据库1.创建用户来运行&#xff0c;此用户从任何主机连接到mysql数据库2.使用IP地址来访问MySQL数据库 如何远程访问Django项目Web应用什么是Web应用应用程序的两种模式Web应用程序的优缺点 HTTP协议&#xff08;超文本传输协议&#xff09;简介HTT…

vue+uniapp校园寻物失物招领平台 微信小程序1f6z5

系统中的核心用户是管理员&#xff0c;管理员登录后&#xff0c;通过管理员菜单来管理后台系统。主要功能有&#xff1a;首页、个人中心、用户管理、物品分类管理、物品信息管理、物品归还管理、留言板管理、系统管理等功能。管理员用例如图3-7所示。 对于本网上失物招领小程序…

Java高级技术(反射:获取类)

一&#xff0c;认识反射 二&#xff0c; 反射第一步 三&#xff0c;案例

传奇手游白日门【纵横天下】win服务端+双端+GM后台+详细架设教程

搭建资源下载地址&#xff1a;传奇手游白日门【纵横天下】win服务端双端GM后台详细架设教程-海盗空间

【运维】hive 高可用详解: Hive MetaStore HA、hive server HA原理详解;hive高可用实现

文章目录 一. hive高可用原理说明1. Hive MetaStore HA2. hive server HA 二. hive高可用实现1. 配置2. beeline链接测试3. zookeeper相关操作 一. hive高可用原理说明 1. Hive MetaStore HA Hive元数据存储在MetaStore中&#xff0c;包括表的定义、分区、表的属性等信息。 hi…

1和0的故事-MISC-bugku-解题步骤

——CTF解题专栏—— 题目信息&#xff1a; 题目&#xff1a;1和0的故事 作者&#xff1a;Eas0a 提示&#xff1a;无 解题附件&#xff1a; 解题思路&#xff1a; 哦&#xff1f;1和0的故事&#xff1f;&#xff08;奸笑.jpg&#xff09;&#xff0c;打开看看啊。 emmm...j…

Python小技巧:探索函数调用为何加速代码执行

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com Python 作为一种解释型语言&#xff0c;其执行速度相对于编译型语言可能会较慢。然而&#xff0c;在Python中&#xff0c;通常观察到代码在函数中运行得更快的现象。这个现象主要是由于函数调用的内部优化和解释…

Java高级技术(反射:获取类的构造器)

一&#xff0c;常用方法 二&#xff0c;案例 &#xff08;1&#xff09;&#xff0c;获取全部构造器 &#xff08;2&#xff09;&#xff0c;获取某个构造器 &#xff08;3&#xff09;&#xff0c;实验类 三&#xff0c; 初始化对象 四&#xff0c;案例

Stable Diffusion绘画系列【5】:粉色机甲少女

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

庆祝 Lacoste 成立 90 周年,The Sandbox 与 Lacoste 携手推出 Lacoste 全球巡游体验活动

Lacoste 全球巡游体验让玩家沉浸在以品牌历史为基础的游戏化世界中。 The Sandbox 非常高兴地宣布与 Lacoste 建立新的合作伙伴关系&#xff0c;共同打造 Lacoste 全球巡游体验。 该体验活动将汇聚来自世界各地的 Lacoste 品牌粉丝&#xff0c;让他们揭开传说中鳄鱼部落所在地…

香港科技大学数据建模(MSc DDM)硕士学位项目(2024年秋季入学)招生宣讲会-武汉专场

时间&#xff1a;2023 年12 月 8 日&#xff08;周五&#xff09; 15:00 地点&#xff1a;华中科技大学大学生活动中心B座303 嘉宾教授&#xff1a;张锐 教授 项目旨在培养科学或工程背景的学员从数据中提取信息的数据建模能力&#xff0c;训练其拥有优秀的解难和逻辑思考与分…

Python基础:标准库概览

1. 标准库介绍 Python 标准库非常庞大&#xff0c;所提供的组件涉及范围十分广泛&#xff0c;正如以下内容目录所显示的。这个库包含了多个内置模块 (以 C 编写)&#xff0c;Python 程序员必须依靠它们来实现系统级功能&#xff0c;例如文件 I/O&#xff0c;此外还有大量以 Pyt…

MindStudio学习记录三:推理应用开发 acl mindx sdk

1.推理应用流程 1.1.创建工程 1.2.模型转换 1.3代码开发 1.3.1ACL代码 1.3.2MindX SDK开发 可视化模块化设计 中间的图片与处理 是基于AIPP的可视化处理 1.5.编译 交叉编译 1.6.运行与调试 1.7 调优工具 profiling性能分析 2.开发举例 resnet-50 2.1 准备工程 2.2.准备模型…

哈希和unordered系列封装(C++)

哈希和unordered系列封装 一、哈希1. 概念2. 哈希函数&#xff0c;哈希碰撞哈希函数&#xff08;常用的两个&#xff09;哈希冲突&#xff08;碰撞&#xff09;小结 3. 解决哈希碰撞闭散列线性探测二次探测代码实现载荷因子&#xff08;扩容&#xff09; 开散列哈希桶代码实现扩…

bluez inquiry 流程梳理--从代码层面理解bluez架构

贴一张bluez架构图方便理解 user space APP&#xff1a;上层应⽤程序 Pluseaudio/pipewire&#xff1a;A2DP的组件 Bluetoothd: 蓝⽛守护进程 Bluez: 包括Bluez tool跟Bluez lib kernel space 内核代码包含以下⼏部分 driver/bluetooth net/bluetooth include/net/bluetooth…

webpack项目工程初始化

一、初始化项目 默认系统已经安装node //初始化 pnpm init//安装webpack pnpm i -D webpack webpack-cli 新建一个index.html的入口文件 新建一个src文件存放js代码&#xff0c;src里面新建一个index.js package.josn配置打包命令 {"name": "webpack-cs&q…

vue+elementUI的tabs与table表格联动固定与滚动位置

有个变态的需求&#xff0c;要求tabs左侧固定&#xff0c;右侧是表格&#xff0c;点击左侧tab&#xff0c;右侧表格滚动到指定位置&#xff0c;同时&#xff0c;右侧滚动的时候&#xff0c;左侧tab高亮相应的item 上图 右侧的高度非常高&#xff0c;内容非常多 常规的瞄点不适…

零基础可以学编程吗,不懂英语怎么学编程,中文编程工具实例

零基础可以学编程吗&#xff0c;不懂英语怎么学编程&#xff0c;中文编程工具实例 上图是中文编程工具界面、标尺实例。 给大家分享一款中文编程工具&#xff0c;零基础轻松学编程&#xff0c;不需英语基础&#xff0c;编程工具可下载。 这款工具不但可以连接部分硬件&#x…

spring-boot对rabbitMQ的操作

一、安装rabbitMQ 1、直接使用docker拉取镜像 docker pull rabbitmq:3.82、启动容器 docker run \-e RABBITMQ_DEFAULT_USERadmin \-e RABBITMQ_DEFAULT_PASS123456 \-v mq-plugins:/plugins \--name rabbit01 \--hostname rabbit01 --restartalways \-p 15672:15672 \-p 5672:…