OpenCV完结篇——计算机视觉(人脸识别 || 车牌识别)

news2025/1/12 23:42:01

文章目录

  • Haar人脸识别方法
  • Haar识别眼鼻口
  • Haar+Tesseract进行车牌识别
  • 深度学习基础知识
  • dnn实现图像分类

在这里插入图片描述
在这里插入图片描述

Haar人脸识别方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
scaleFactor调整哈尔级联器的人脸选框使其能框住人脸
在这里插入图片描述
官方教程指路
在这里插入图片描述
每个特征都是通过从黑色矩形下的像素总和减去白色矩形下的像素总和获得的单个值
在这里插入图片描述
级联器模型文件位置

# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

在这里插入图片描述

Haar识别眼鼻口

# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
eyes = eye.detectMultiScale(gray, 1.1, 5)
mouses = mouse.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

for (x, y, w, h) in eyes:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 3)

# for (x, y, w, h) in mouses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

在这里插入图片描述
识别嘴就会不精确了

# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
eyes = eye.detectMultiScale(gray, 1.1, 5)
mouses = mouse.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

for (x, y, w, h) in eyes:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 3)

for (x, y, w, h) in mouses:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

在这里插入图片描述
识别鼻子

# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')
nose = cv2.CascadeClassifier('./haarcascade_mcs_nose.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
eyes = eye.detectMultiScale(gray, 1.1, 5)
mouses = mouse.detectMultiScale(gray, 1.1, 5)
noses = nose.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

for (x, y, w, h) in eyes:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 3)

for (x, y, w, h) in mouses:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

for (x, y, w, h) in noses:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

在这里插入图片描述
只要不测口,还是比较准确的

# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')
nose = cv2.CascadeClassifier('./haarcascade_mcs_nose.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
# eyes = eye.detectMultiScale(gray, 1.1, 5)
# mouses = mouse.detectMultiScale(gray, 1.1, 5)
# noses = nose.detectMultiScale(gray, 1.1, 5)

i = 0

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)
    roi_img = img[y: y+h, x:x+w]
    eyes = eye.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in eyes:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (255, 255, 0), 3)
    noses = nose.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in noses:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (0, 0, 255), 3)
    # mouses = mouse.detectMultiScale(roi_img, 1.1, 5)
    # for (x, y, w, h) in mouses:
    #     cv2.rectangle(roi_img, (x, y), (x + w, y + h), (0, 255, 255), 3)
    
    # i += 1
    # winname = 'face' + str(i)
    # cv2.imshow(winname, roi_img)

# for (x, y, w, h) in mouses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

# for (x, y, w, h) in noses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

在这里插入图片描述
测口准确度太低!!!

# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')
nose = cv2.CascadeClassifier('./haarcascade_mcs_nose.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
# eyes = eye.detectMultiScale(gray, 1.1, 5)
# mouses = mouse.detectMultiScale(gray, 1.1, 5)
# noses = nose.detectMultiScale(gray, 1.1, 5)

i = 0

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)
    roi_img = img[y: y+h, x:x+w]
    eyes = eye.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in eyes:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (255, 255, 0), 3)
    noses = nose.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in noses:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (0, 0, 255), 3)
    mouses = mouse.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in mouses:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (0, 255, 255), 3)
    
    # i += 1
    # winname = 'face' + str(i)
    # cv2.imshow(winname, roi_img)

# for (x, y, w, h) in mouses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

# for (x, y, w, h) in noses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

在这里插入图片描述

Haar+Tesseract进行车牌识别

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
安装很简单,这里贴一个安装教程

配置出现问题的,可以看看这篇博客

测试一下,识别文字还是很准的!!!
在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as np

# cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
carplate = cv2.CascadeClassifier('./haarcascade_russian_plate_number.xml')

#第二步,导入带车牌的图片并将其灰度化
img = cv2.imread('./chinacar.jpeg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行车牌定位
#[[x,y,w,h]]
carplates = carplate.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in carplates:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as np

# cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
carplate = cv2.CascadeClassifier('./haarcascade_russian_plate_number.xml')

#第二步,导入带车牌的图片并将其灰度化
img = cv2.imread('./chinacar.jpeg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行车牌定位
#[[x,y,w,h]]
carplates = carplate.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in carplates:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

# 对获取到的车牌进行预处理
# 1.提取ROI
roi = gray[y: y+h, x:x+w]
# 2.进行二值化
ret, roi_bin = cv2.threshold(roi, 10, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

cv2.imshow('img', img)
cv2.imshow('roi_bin', roi_bin)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as np

# 引入tesseract库
import pytesseract

# cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
carplate = cv2.CascadeClassifier('./haarcascade_russian_plate_number.xml')

#第二步,导入带车牌的图片并将其灰度化
img = cv2.imread('./chinacar.jpeg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行车牌定位
#[[x,y,w,h]]
carplates = carplate.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in carplates:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

# 对获取到的车牌进行预处理
# 1.提取ROI
roi = gray[y: y+h, x:x+w]
# 2.进行二值化
ret, roi_bin = cv2.threshold(roi, 10, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

pytesseract.pytesseract.tesseract_cmd = r'D:\Program Files\Tesseract_OCR\tesseract.exe'
print(pytesseract.image_to_string(roi, lang='chi_sim+eng', config='--psm 8 --oem 3'))

cv2.imshow('img', img)
cv2.imshow('roi_bin', roi_bin)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

在这里插入图片描述
具体实现还需要进一步优化!!!

深度学习基础知识

深度学习是计算机视觉最为重要的方法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

dnn实现图像分类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
from cv2 import dnn
import numpy as np

# 1.导入模型,创建神经网络
# 2.读取图片,转成张量
# 3.将张量输入到网络中,并进行预测
# 4.得到结果,显示

# 导入模型,创建神经网络
config = "./bvlc_googlenet.prototxt"
model = "./bvlc_googlenet.caffemodel"
net = dnn.readNetFromCaffe(config, model)

# 读取图片,转成张量
img = cv2.imread('./smallcat.jpeg')
blob = dnn.blobFromImage(img, 1.0, (224, 224), (104, 117, 123))

# 将张量输入到网络中,并进行预测
net.setInput(blob)
r = net.forward()

# 读取类目
classes = []
path = './synset_words.txt'
with open(path, 'rt') as f:
    classes = [x [x.find(" ") + 1:] for x in f]

order = sorted(r[0], reverse=True)
z = list(range(3))

for i in list(range(0, 3)):
    z[i] = np.where(r[0] == order[i])[0][0]
    print('No.', i + 1, ' matches:', classes[z[i]], end='')
    print('category row is at:', z[i] + 1, ' ', 'posibility:', order[i])

在这里插入图片描述
在这里插入图片描述

之后我会持续更新,如果喜欢我的文章,请记得一键三连哦,点赞关注收藏,你的每一个赞每一份关注每一次收藏都将是我前进路上的无限动力 !!!↖(▔▽▔)↗感谢支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1259702.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

94.STM32外部中断

目录 1.什么是 NVIC? 2.NVIC寄存器 3.中断优先级 4.NVIC的配置 设置中断分组​编辑 配置某一个中断的优先级 5.什么是EXTI 6.EXTI和NVIC之间的关系 7.SYSCFG 的介绍 1.什么是 NVIC? NVIC是一种中断控制器,主要用于处理 ARM Cort…

如何将mobi、awz3、epub格式转化为pdf

偶然之间有个需求就是网上下载了一些书籍的格式没法打开看,或者是想把kindle的书籍转换成pdf 那么经过一番折腾找到了两个可以用的工具站分享给大家,有需要的可是尝试下,小编这边测试了可以用,就是下载的时候慢的一匹。。。 第一…

【C++】类型转换 ④ ( 子类 和 父类 之间的类型转换 - 动态类型转换 dynamic_cast )

文章目录 一、子类 和 父类 之间的类型转换 - 动态类型转换 dynamic_cast1、构造父类和子类2、子类 和 父类 之间的类型转换 - 隐式类型转换3、子类 和 父类 之间的类型转换 - 静态类型转换 static_cast4、子类 和 父类 之间的类型转换 - 重新解释类型转换 reinterpret_cast5、…

时间序列预测实战(二十)自研注意力机制Attention-LSTM进行多元预测(结果可视化,自研结构)

一、本文介绍 本文给大家带来的是我利用我自研的结构进行Attention-LSTM进行时间序列预测,该结构是我专门为新手和刚入门的读者设计,包括结果可视化、支持单元预测、多元预测、模型拟合效果检测、预测未知数据、以及滚动长期预测,大家不仅可…

2023-2024-1-高级语言程序设计-字符数组

7-1 凯撒密码 为了防止信息被别人轻易窃取,需要把电码明文通过加密方式变换成为密文。输入一个以回车符为结束标志的字符串(少于80个字符),再输入一个整数offset,用凯撒密码将其加密后输出。恺撒密码是一种简单的替换…

DIO算法

歌声和语音声带振动周期的快速可靠F0估计方法 原文题目: Fast and reliable F0 estimation method based on the period extraction of vocal fold vibration of singing voice and speech 发表在: AES 35TH INTERNATIONAL CONFERENCE, London, UK, 200…

【RLChina2023】CCF 苏州 记录

目录 RLChina介绍主旨报告专题报告智能体学习理论(专题一)智能体决策与规划(专题二)智能体框架、体系结构与训练系统(专题六)基于大语言模型的具身智能体与机器人研究 (专题八)教学报告——强化学习入门特别论坛——智能体和多智能体艺术的探索会议照片RLChina介绍 RLC…

什么是迁移学习

1 迁移学习概述 迁移学习(Transfer Learning)是机器学习中的一种方法,它允许模型将从一个任务中学到的知识应用到另一个相关的任务中。这种方法在数据稀缺的情况下尤为有用,因为它减少了对大量标记数据的需求。迁移学习已成为深度…

Failed to load resource: the server responded with a status of 404 ()

路径问题: 路径省略前面的http://localhost:8080/ 就行了。

OSG粒子系统与阴影 - ​​​​​​​阴影shadow(7)

OSG阴影 在虚拟现实仿真中,为了真实地模拟自然效果,阴影效果是不可缺少的,它对一个场景的真实性是非常重要的。在游戏或仿真中,一个高效的阴影往往能够提供非常强悍的视觉真实感。 osgShadow库 在OSG中专门定义了一个名字空间osg…

ShowWeb-浏览器插件:可视化元素路径查看器

ShowWeb👻:可视化元素路径查看器适配【谷歌】【Edge】 每次写前端最烦的就是一层一层找元素,又臭又长。所以我开发了一个小插件来缓解这个问题,这个插件可以输出整个路径,并把最后元素的内容输出方便查看,…

docker基础快速入门:基础命令、网络、docker compose工具

docker基础命令快速入门 目录 docker基本命令docker 网络docker compose Docker介绍 Docker是一个虚拟环境容器,可以将你的开发环境、代码、配置文件等一并打包到这个容器中,并发布和应用到任意平台中。 Docker的三个概念 镜像 Docker镜像是一个特…

Java飞翔的小鸟

一、项目分析 创建一个窗口和画板,把画板放到窗口上,在画板上绘画图片 (2)让小鸟在画面中动起来,可以上下飞 (3)让地面和管道动起来 (4)碰撞检测 (5&#xf…

2023信息技术应用创新论坛|云轴科技ZStack分享云原生超融合在智慧交通的应用

11月25日,2023信息技术应用创新论坛在常州开幕。江苏省工业和信息化厅副厅长池宇、中国电子工业标准化技术协会理事长胡燕、常州市常务副市长李林等领导出席论坛并致辞。中国工程院院士郑纬民出席并作主题报告。来自产学研用金等各界的千余名代表参加本次论坛。 在“…

UE5 - 虚幻引擎各模块流程图

来自虚幻官方的一些资料,分享一下; 一些模块的流程图,比如动画模块: 或角色相关流程: 由于图片比较大,上传到了网络,可自取: 链接:https://pan.baidu.com/s/1BQ2KiuP08c…

MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】

1、rvctools下载安装 rvctools下载地址:rvctools下载 截图如下,点击红色箭头指示的“Download Shared Folder” 即可下载 下载之后进行解压,解压到D:\MATLAB\toolbox这个工具箱目录,这个安装路径根据自己的情况来选择&#xff0c…

【华为OD】统一考试C卷真题 100%通过: 传递悄悄话 二叉树遍历 C/C++实现

目录 题目描述: 示例1 解题思路: 代码实现: 题目描述: 给定一个二叉树,每个节点上站着一个人,节点数字表示父节点到该节点传递悄悄话需要花费的时间。 初始时,根节点所在位置的人有一个悄悄…

中通快递查询入口,根据物流更新量筛选出需要的单号记录

批量中通快递单号的物流信息,根据物流更新量将需要的单号记录筛选出来。 所需工具: 一个【快递批量查询高手】软件 中通快递单号若干 操作步骤: 步骤1:运行【快递批量查询高手】软件,并登录 步骤2:点击主…

代码随想录算法训练营第六十天|84. 柱状图中最大的矩形

84. 柱状图中最大的矩形 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大面积。 示例 1: 输入:heights [2,1,5,6,2,3] 输出:10 解释…

PT里如何针对某个模块设置false path

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 如题,这个问题实际上讲的是get_cells的用法,我们要抓取某个模块内的全部cell,在ICC2里可以get_flat_cells xx/xx/module_name*,但…