Linuxfork,写时拷贝

news2024/11/28 6:38:15

1.prinf隐藏的缓冲区

1.思考:为什么会有缓冲区的存在?

2.演示及思考?

1).演示缓存区没有存在感
那为什么我们感觉不到缓冲区的存在呢?我们要打印东西直接就打印了呢?
我们用代码演示一下:

比如打开一个main.c,输入内容如下:

 #include <stdio.h>

int main()
 {
    printf("hello");
 }

我们运行的之后直接就打印了hello,好像没有感觉到缓冲区 的存在;
原因是因为此时程序已经结束了,它会刷新缓冲区的内容;

2)演示缓冲区的存在

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
 {
 printf("hello");
 sleep(3);
 exit(0);
}

3.强制刷新
(1)方法一:遇到\n自动刷新
printf("hello\n");
(2)使用fflush刷新屏幕
fflush(stdout);

  1. _exit与exit

exit是先刷新缓冲区,然后再调用_exit(真正的退出);
_exit直接退出,不会刷新缓冲区;

比如如下的代码:

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>

int main()
 {
 printf("hello");
 //fflush(stdout);
 sleep(3);
 _exit(0);//注意这里,不输出hello
 }

5.总结
printf将内容先写入到缓冲区中,缓冲区刷新到界面(屏幕)上的条件是:
(1)缓冲区放满
(2)缓冲区未满,强制刷新缓冲区到屏幕(方法一:\n;方法二:主动刷新:fflush(stdout));
(3)程序结束时,自动刷新缓冲区:exit方法;

6.为什么会有缓冲区的存在?

屏幕是一个硬件设备,是由操作系统来管理的,因此printf打印的时候需要调用操作系统的接口才能完成,这个时候我们需要从用户态切换到内核态,这个开销是比较大的.

2.fork复制进程:

1)shell:

在计算机科学中,Shell俗称壳(用来区别于核),是指“为使用者提供操作界面”的软件(command interpreter,命令解析器)。它类似于DOS下的COMMAND.COM和后来的cmd.exe。它接收用户命令,然后调用相应的应用程序。

我们就是通过命令解释器(称为shell)(bash是命令解释器中的一种)和内核和系统进行交互的(Windows通过图形界面进行交互的);例如我们把ls交给bash,bash帮我们运行ls,然后把结果给用户;

2)fork如何复制进程?

fork是把已有的进程复制一份,当然把PCB也复制了一份,然后申请一个PID,子进程的PID=父进程的PID+1;

 

如果父子进程想要做不同的事情,那么我们通过返回值来判断;
man fork

代码如下

#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#include <stdlib.h>

int main()
{
    char *s=NULL;
    int n=0;//控制父子进程执行的次数;

    pid_t id=fork();
    assert(id!=-1);

    if(id==0)//子进程
    {
        s="child";
        n=3;
    }
    else//父进程
    {
        s="parent";
        n=7;
    }
     //父子进程
    int i=0;
    for(;i<n;i++)
    {
        printf("s=%s\n",s);
        sleep(1);
    }
    exit(0);
}

父子进程是两个独立的进程,各自执行各自的代码;如果父子进程要做不一样的事情,就通过if  else返回值来操作;

3)fork的时机

fork产生的这个子进程不是从头开始执行的,而是从fork之后开始执行的,就是说fork下面的代码子进程才开始执行,具体的是说从返回值这里子进程开始执行,子进程不会再fork了,所以不会出现子进程再去fork产生一个子进程的问题.
也就是说:从返回值这里开始,父进程返回子进程的PID,子进程返回0;

4)getppid与getpid

getppid:得到一个进程的父进程的PID;
getpid:得到当前进程的PID;

man getpid;
man getppid

3.fork补充:

操作系统精髓与设计原理第101页;

4.如何学好多进程以及面试考点?

1)充分理解多进程的概念(每次程序多执行几次,多理解一下)

2)考点:

fork多以笔试的形式出现;

面试的考点:

例如:

1.我们在进程中看到的地址是进程的物理地址还是逻辑地址?(为什么这么问,单进程不分物理地址和逻辑地址吗);

2.进程同步设计(比如多进程抢夺资源)(难点,用程序实现)

3.fork与文件指针

(1)fork 以后,父进程打开的文件指针位置在子进程里面是否一样?(先open再fork)
(2)能否用代码简单的验证一下?
(3)先fork再打开文件父子进程是否共享偏移量?父进程打开的文件指针位置在子进程里面是否一样?能否用代码简单验证一下.(先fork再open会怎么样?)

4.fork+exec

5.僵死进程原因及处理方法;

5.内存管理相关概念

1.简单分页 逻辑页 物理页 页表的概念:
从哲学层次看操作系统157页(需要详细看)

2.虚拟内存:

虚拟内存提供的三个重要的能力:
1) 它将主存看成是一个存储在磁盘上的地址空间的高速缓存,在主存中只保存活动区域,根据需要在磁盘和主存之间来回传送数据,使得能够运行比内存大的多的进程。
2) 它为每个进程提供了一致的地址空间,从而简化了存储器管理.
3) 它保护每个进程的地址空间不被其他进程破坏 .

6.写时拷贝技术:

不采用写时拷贝,如何fork?

第一:复制开销比较大;
第二:占用内存空间;
所以我们对fork复制进程的过程就做了一个优化-----写时拷贝技术;

综上,就是fork的时候,子进程直接把父进程的页表复制过来,子进程发生写入(修改)的时候才分配内存复制,然后进行相应的页表修改.

写时拷贝是一种可以推迟甚至免除拷贝数据的技术.

7.我们在进程中看到的地址是进程的物理地址还是逻辑地址?

 printf("s=%s,pid=%d,ppid=%d,n的地址为:%p\n",s,getpid(),getppid(),&n);//打印n的地址

8.进程的逻辑地址与物理地址

父子进程中n的值都不一样,那么我们为什么看到n的地址是相同的呢?

我们在进程中看到的地址就是进程的逻辑地址(进程的4G空间,从0开始,一直往上增长);

32位系统上,都有一个0-4G的地址空间:
在Linux系统上,最上面这1G由内核使用,下面3G是用户在使用;
为什么是4G呢?在32位系统上,能够寻址的范围就是2^32=4294967296字节/1000=4294976K /1000=4294M /1000=4.29 G 约等于4G  .

而我们把所有的地址都编号,

1K=2^10 ,4K=2^12
物理页面能有多少个页面呢?4G/4K=2^32 / 212=2(32-12)=2^20个页面

所以说,父子进程逻辑地址一样,但是物理地址是不一样的;

以前我们的程序都是只有一个进程,我们逻辑地址相同,那么我们的逻辑地址映射过去的物理地址肯定也是相同的一块空间,只有一个进程,就不用刻意去理解逻辑地址和物理地址的差异;对于同一进程,逻辑地址相同,物理地址肯定相同.
现在,我们的程序都是多进程的,逻辑地址相同,对应的物理地址就不一定相同了;也就是说A进程和B进程的逻辑地址相同,就不能说明物理地址一定相同,我们还需要看各自的页表,看看页表是否相同.(页表就是逻辑页和物理页的映射关系);
不同进程的逻辑地址是没有比较的意义的;

9.为什么在程序中不直接使用物理地址呢?

我们无法预知哪些物理地址是空闲的,同时空闲的也是动态变化的,程序在不断的申请释放空间中.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1256901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【论文解读】Real-ESRGAN:使用纯合成数据训练真实世界的超分辨率图像

图一是4种超分方法的对比效果 。 0 摘要 尽管在盲超分辨率方面已经进行了许多尝试&#xff0c;以恢复具有未知和复杂退化的低分辨率图像&#xff0c;但它们仍然远远不能解决一般的真实世界退化图像。在这项工作中&#xff0c;我们将强大的 ESRGAN 扩展到一个实际的恢复应用程序…

计算机图形学-变换基础

坐标系转换历程模型坐标系 -> 世界坐标系 -> 摄像机坐标系 -> 视口&#xff08;屏幕&#xff09;坐标系 变换 仿射变换和线性变换线性&#xff1a;旋转 缩放 镜像 切变放射&#xff1a; 平移 平移 2D变换矩阵 3D变换矩阵 旋转 2D旋转矩阵 //2D 旋转private (float,…

案例026:基于微信的原创音乐小程序的设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

7000字详解 动态代理(JDK动态代理 CGLIB动态代理)与静态代理

代理模式 1. 代理模式 概念2. 静态代理3. 动态代理3.1.JDK动态代理3.2.CGLIB动态代理3.3. JDK动态代理和CGLIB动态代理区别 4.静态代理和动态代理区别5.篇末 1. 代理模式 概念 代理模式是一种设计模式。 使用代理对象来替代真实对象&#xff0c;用代理对象去访问目标对象。这样…

ROS2智能小车基本原理图

我觉得这样意思已经表的很清楚了 这个图很重要&#xff0c;有了这个图&#xff0c;就可以积累每个部分的代码了&#xff0c;如果没有这个图&#xff0c;那么每次都只能是测试&#xff0c;以前的代码都会需要重新写一次。不过第一次训练也许更重要&#xff0c;这也是不可避免的…

使用STM32与MFRC522 IC进行RFID卡的读取与识别(含代码)

利用STM32与MFRC522 IC进行RFID卡的读取和识别&#xff0c;可以实现对RFID卡的读取和获取卡片标识信息。MFRC522 IC是一种高集成度的13.56MHz RFID芯片&#xff0c;常用于门禁系统、物流跟踪和智能支付等领域。下面将介绍如何使用STM32与MFRC522 IC进行RFID卡的读取和识别&…

Mycat实现读写分离

Mycat实现读写分离 Mycat支持MySQL主从复制状态绑定的读写分离机制。这里实现的也是基于MySQL主从复制的读写分离。 MySQL主从复制配置 首先要配置MySQL的主从复制&#xff0c;这里配置的是一主一次从。可以参考下面的文章。 https://blog.csdn.net/wsb_2526/article/detail…

【c++随笔14】虚函数表

【c随笔14】虚函数表 一、虚函数表&#xff08;Virtual Function Table&#xff09;1、定义2、查看虚函数表2.1、 问题&#xff1a;三种类型&#xff0c;包含一个int类型的class、一个int类型的变量、int类型的指针&#xff1a;这三个大小分别是多少呢&#xff1f;2.2、怎么发现…

JVM 内存管理深度剖析

1、JVM 基础知识 1.1 JVM 与操作系统的关系 JVM 能识别 class 后缀的文件&#xff0c;并且能够解析它的指令&#xff0c;最终调用操作系统上的函数&#xff0c;完成指定操作。操作系统并不认识这些 class 文件&#xff0c;是 JVM 将它们翻译成操作系统可识别的机器码&#xf…

【古诗生成AI实战】之二——项目架构设计

[1] 项目架构 在我们深入古诗生成AI项目的具体实践之前&#xff0c;让我们首先理解整个项目的架构。本项目的代码流程主要分为三个关键阶段&#xff1a; 1、数据处理阶段&#xff1b;   2、模型训练阶段&#xff1b;   3、文本生成阶段。 第一步&#xff1a;在数据处理阶段…

WordPress无需插件禁用WP生成1536×1536和2048×2048尺寸图片

我们在使用WordPress上传图片媒体文件的时候&#xff0c;是不是看到媒体库中有15361536和20482048的图片文件&#xff0c;当然这么大的文件会占用我们的服务器空间&#xff0c;如何禁止掉呢&#xff1f; function remove_default_image_sizes( $sizes) {unset( $sizes[1536x15…

Gee教程1.HTTP基础

标准库启动web服务 Go语言内置了 net/http库&#xff0c;封装了HTTP网络编程的基础的接口。这个Web 框架便是基于net/http的。我们先回顾下这个库的使用。 package mainimport ("fmt""log""net/http" )func main() {//可以写成匿名函数(lambda…

Java 注解在 Android 中的使用场景

Java 元注解有 5 种&#xff0c;常用的是 Target 和 Retention 两个。 其中 Retention 表示保留级别&#xff0c;有三种&#xff1a; RetentionPolicy.SOURCE - 标记的注解仅保留在源码级别中&#xff0c;并被编译器忽略RetentionPolicy.CLASS - 标记的注解在编译时由编译器保…

树状数组 / pbds解法 E2. Array Optimization by Deque

Problem - 1579E2 - Codeforces Array Optimization by Deque - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 树状数组解法 将 a i a_i ai​插入到队头&#xff0c;贡献为&#xff1a;原队列中所有比 a i a_i ai​小的数的数量将 a i a_i ai​插入到队尾&#xff0c;贡献为&a…

深信服超融合一体机提示:内存ECC

PS&#xff1a;此事件分享主要来源于季度巡检时发现的超融合一体机红灯闪烁异常&#xff0c;接入IPMI端口查看日志发现持续提示内存ECC&#xff1b; 因为是只有3.05这一天发现了有这个告警的提示&#xff0c;所以当时清除了日志以后重启了BMC服务就解决了&#xff1b;但是如果清…

常见树种(贵州省):021冬青、连香树、白辛树、香合欢、云贵鹅耳枥、肥牛树、杜英、格木、黄连木、圆果化香树、南天竹

摘要&#xff1a;本专栏树种介绍图片来源于PPBC中国植物图像库&#xff08;下附网址&#xff09;&#xff0c;本文整理仅做交流学习使用&#xff0c;同时便于查找&#xff0c;如有侵权请联系删除。 图片网址&#xff1a;PPBC中国植物图像库——最大的植物分类图片库 一、冬青 …

MyBatis插入操作返回主键报错问题记录

一开始用直接传参数的方法写的插入操作 StudentMapper.java接口 Integer insertStudent(Param("sname") String name,Param("sage") int age); 然后在网上搜了返回主键的方法 StudentMapper.xml: <insert id"insertStudent" useGenerat…

简易版王者荣耀

所有包和类 GameFrame类 package newKingOfHonor;import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyAdapter; import java.awt.event.KeyEvent; import java.io.File; import java.util.ArrayList;im…

【操作系统】Linux操作系统中命令行参数与环境变量

本篇要分享的内容关于Linux新操作系统中命令行参数。 命令行参数本质上还是作为以后的环境变量的基础来学习的&#xff0c;所以在接触更高难度的内容之前先学习基础。 以下为本篇目录 目录 1.main函数的参数&#xff1f; 2.命令行解释器意义 3.环境变量 3.1.PATH环境变量…

手把手教会你--渗透实战--Hack The Box-Starting Point-Meow--持续更新

有什么问题&#xff0c;请尽情问博主&#xff0c;QQ群796141573 前言 前言 请务必跟着博主复现一遍 参考&#xff1a; Hack The Box-Starting Point-Meow