Matlab数学建模算法详解之混合整数线性规划 (MILP) 算法(附完整实现代码)

news2024/11/29 0:47:30

🔗 运行环境:Matlab

🚩 撰写作者:左手の明天

🥇 精选专栏:《python》

🔥  推荐专栏:《算法研究》

#### 防伪水印——左手の明天 ####

💗 大家好🤗🤗🤗,我是左手の明天!好久不见💗

💗今天分享matlab数学建模算法——混合整数线性规划 (MILP) 算法💗

📆  最近更新:2023 年 11 月 26 日,左手の明天的第 295 篇原创博客

📚 更新于专栏:matlab

#### 防伪水印——左手の明天 ####


一、混合整数线性规划 (MILP) 

混合整数线性规划(Mixed Integer Linear Programming,MILP)是一种优化技术,它涉及到决策变量的线性约束和整数约束。MILP 通常用于解决复杂的组合优化问题,例如生产计划、物流和供应链管理、金融和投资组合优化、路由和调度问题等。

MILP 的核心是整数规划,它是一种数学方法,用于确定在一组线性不等式约束下决策变量的最优解。整数规划的主要特征是它要求决策变量是整数,这通常对应着物理系统中的离散决策或状态。

MILP 算法可以大致分为两类:精确算法和启发式算法。

  1. 精确算法:这些算法试图找到最优解,但它们可能需要大量的计算时间和内存。例如,分支定界法是一种常用的 MILP 精确算法,它通过不断分割可行解空间来找到最优解。此外,还有一些更高级的算法,如割平面法、动态规划等。
  2. 启发式算法:这些算法并不总是找到最优解,但它们通常可以在更短的时间内找到一个“好的”解决方案。例如,遗传算法是一种常用的 MILP 启发式算法,它通过模拟自然选择过程来找到一个好的解决方案。此外,模拟退火、粒子群优化等也是常用的启发式 MILP 算法。

在实际应用中,通常会使用一些专门的 MILP 求解器(例如 CPLEX、Gurobi、GLPK 等)来求解 MILP 问题,这些求解器内部实现了相应的算法并提供了友好的用户界面和 API 来与实际问题进行交互。

二、对混合整数线性规划问题进行整数规划的求解

混合整数线性规划问题是一类包含连续变量和整数变量的线性规划问题。这类问题在现实生活中具有广泛的应用场景,如生产计划、物流优化、金融投资等。整数规划的求解方法可以帮助我们找到问题的最优解,下面将详细介绍如何对混合整数线性规划问题进行整数规划的求解。

1、定义问题

首先需要明确定义混合整数线性规划问题。包括目标函数、约束条件、整数变量和非整数变量等。同时,需要确定整数变量的取值范围和约束条件的具体数值。

2、求解整数规划问题

求解混合整数线性规划问题,首先需要将其转化为整数规划问题。可以通过数学软件(如MATLAB、Python等)或专业的优化软件(如Gurobi、CPLEX等)进行求解。在求解整数规划问题时,需要根据问题的具体形式进行建模,并设置相应的参数进行求解。

3、求解约束条件

在混合整数线性规划问题中,约束条件的处理也是非常关键的。需要对每个约束条件进行松弛处理,将其转化为等式约束或者不等式约束。对于等式约束条件,可以通过增加一个小的松弛变量将其转化为不等式约束条件;对于不等式约束条件,可以通过引入一个非负变量将其转化为等式约束条件。

4、确定整数变量

在混合整数线性规划问题中,整数变量的确定也是非常重要的。需要根据问题的具体形式,确定哪些变量需要取整数,并设置相应的整数约束条件。同时,需要考虑整数变量的取值范围,以及不同整数变量之间的取值关系。

5、分析解的可行性

在求解混合整数线性规划问题时,需要分析解的可行性。可以通过对解的观察和分析,判断是否存在可行解。如果存在可行解,则可以继续进行求解;如果不存在可行解,则需要重新定义问题或者调整参数。

6、验证解的正确性

在找到问题的最优解后,需要进行验证和解的正确性分析。可以通过对解的分析和检验,判断最优解是否满足原问题的约束条件和目标函数的优化方向。如果满足条件,则最优解是正确的;如果不满足条件,则需要重新进行求解或者调整参数。

三、混合整数规划问题算法研究

1、引言

混合整数规划问题(Mixed Integer Programming, MIP)是运筹学和优化理论中的一类重要问题。在现实生活中,混合整数规划问题有着广泛的应用,如供应链管理、生产计划、金融优化、路由规划等。因此,对混合整数规划问题的深入研究具有重要的理论和实践意义。

2、问题定义与建模

混合整数规划问题可以定义为以下数学模型:

  • 线性目标函数 fTx,其中 f 是由常数组成的列向量,x 是由未知数组成的列向量

  • 边界和线性约束,但没有非线性约束

  • 对 x 的某些分量的限制,使其必须具有整数值

以数学语言表达,即根据向量 f、lb 和 ub,矩阵 A 和 Aeq,对应的向量 b 和 beq,以及索引集 intcon,求解向量 x 使下式成立

3、解决方法

在实际应用中,调度问题通常采用混合整数线性规划方法求解。混合整数线性规划是指一个线性规划问题,其中一部分变量是整数变量。混合整数线性规划问题可以通过分支定界法、割平面法、混合整数线性规划松弛等算法进行求解。在调度问题中,分支定界法和混合整数线性规划松弛方法是两种常用的算法。

3.1 分支定界法

分支定界法是一种将问题分解为多个子问题并逐步减少搜索空间的方法。算法的基本思想是,将问题划分为多个可行区域,对每个可行区域逐个进行检查,不断缩小可行区域的规模,直到找到最优解。

分支定界法的具体步骤
  1. 放宽或取消原问题的某些约束条件,求出最优解。如果这个解是原问题的可行解,那么它就是原问题的最优解,计算结束。否则这个解的目标函数值是原问题的最优解的上界。
  2. 将放宽了某些约束条件的替代问题分成若干子问题,要求各子问题的解集合的并集要包含原问题的所有可行解,然后对每个子问题求最优解。这些子问题的最优解中的最优者若是原问题的可行解,则它就是原问题的最优解,计算结束。否则它的目标函数值就是原问题的一个新的上界。另外,各子问题的最优解中,若有原问题的可行解的,选这些可行解的最大目标函数值,它就是原问题的最优解的一个下界。始终从最优解最大的一个子问题开始分支、定界。
✅MATLAB实现分支定界法求解整数规划问题的示例代码
function [x, fval] = branch_and_bound(f, A, b, x0, alpha, beta, max_iter)
% 分支定界法求解整数规划问题
%   min f'*x
%   s.t. Ax <= b, x >= 0, x[i] 属于 {0,1}
% 输入参数:
%   f:目标函数系数
%   A:约束矩阵
%   b:约束边界向量
%   x0:初始解
%   alpha:下界估计值(初始为alpha)
%   beta:上界估计值(初始为beta)
%   max_iter:最大迭代次数
% 输出参数:
%   x:最优解
%   fval:最优解的目标函数值
 
% 初始化变量
iter = 0;
x = x0;
fval = f'*x;
best_fval = fval;
best_x = x;
 
% 开始迭代
while iter < max_iter
    % 生成子问题
    [A_sub, b_sub] = branch(A, b, x);
    if isempty(A_sub)
        % 找到最优解
        x = [1:length(f)]';
        fval = f'*x;
        if fval < best_fval
            best_fval = fval;
            best_x = x;
        end
        return;
    end
    % 计算上下界估计值
    alpha_sub = -inf(1,length(f_sub));
    beta_sub = inf(1,length(f_sub));
    for i = 1:length(f_sub)
        alpha_sub(i) = min(alpha_sub(i), f_sub(i)*x(i));
        beta_sub(i) = max(beta_sub(i), f_sub(i)*x(i));
    end
    % 如果已经找到可行解,更新上界估计值
    if all(x >= 0) && all(A_sub*x <= b_sub)
        beta = min(beta, best_fval);
    end
    % 分支定界法求解子问题
    [x, fval] = branch_and_bound(f_sub, A_sub, b_sub, x, alpha_sub, beta_sub, max_iter);
    iter = iter + 1;
end
end

3.2 混合整数线性规划松弛

混合整数线性规划松弛是一种将整数变量转换为实数变量的方法,然后对相应的线性规划问题进行求解。在调度问题中,将任务i分配到资源j上的变量xij改为0到1之间的实数变量,则约束条件和目标函数都可以进行线性化。通过线性规划来求解任务调度问题可以得到相对较优的解,但是这种方法不能保证得到最优解。

✅松弛问题
  • 目标函数松弛

在混合整数线性规划问题中,目标函数通常是一个连续的线性函数。为了松弛这个问题,可以考虑将目标函数进行线性近似或者泰勒展开,从而将一个复杂的非线性函数转化为一系列简单的线性函数。这样就可以将原问题的求解难度降低,并且可以更容易地找到最优解。

  • 约束条件松弛

在混合整数线性规划问题中,通常存在一些约束条件,比如等式约束和不等式约束。为了松弛这些问题,可以考虑将一些严格的等式约束条件转化为不等式约束条件,从而扩大可行解的范围。同时,也可以考虑将一些复杂的不等式约束条件进行分解,从而将其转化为多个简单的不等式约束条件。这样就可以降低问题的求解难度,并且可以更容易地找到最优解。

  • 整数约束松弛

在混合整数线性规划问题中,通常存在一些整数约束条件。为了松弛这些问题,可以考虑将整数约束条件转化为连续变量的约束条件,从而扩大可行解的范围。同时,也可以考虑将连续变量的约束条件转化为一系列简单的整数约束条件,从而降低问题的求解难度。需要注意的是,在将整数约束条件转化为连续变量的约束条件时,需要考虑使用一些整数规划的方法来保证最终得到的解是整数解。

  • 二次约束松弛

在混合整数线性规划问题中,通常存在一些二次约束条件。为了松弛这些问题,可以考虑将二次约束条件转化为两个一次约束条件的组合,从而降低问题的求解难度。同时,也可以考虑将两个一次约束条件的组合转化为一个简单的二次约束条件,从而进一步降低问题的求解难度。需要注意的是,在进行二次约束条件的松弛时,需要考虑如何保持原问题的可行解不变,并且能够找到一个最优解。

  • 变量范围松弛

在混合整数线性规划问题中,通常存在一些变量范围的限制条件。为了松弛这些问题,可以考虑将变量范围的限制条件进行扩大或者缩小,从而扩大可行解的范围。同时,也可以考虑将一些离散的变量范围转化为连续的变量范围,从而降低问题的求解难度。需要注意的是,在进行变量范围的松弛时,需要考虑如何保持原问题的可行解不变,并且能够找到一个最优解。

综上所述,混合整数线性规划松弛可以从目标函数、约束条件、整数约束、二次约束和变量范围等多个方面进行考虑和处理。通过采用适当的松弛方法,可以降低问题的求解难度,并且更容易地找到最优解。需要注意的是,在进行松弛处理时需要考虑保持原问题的可行解不变,并且能够找到一个最优解。

✅MATLAB中实现混合整数线性规划松弛

在MATLAB中实现混合整数线性规划松弛,可以使用MATLAB的优化工具箱,如Intlinprog函数。以下是一个简单的示例代码,演示如何使用Intlinprog函数实现混合整数线性规划松弛:

% 定义问题
f = [-1; -2];   % 目标函数系数
A = [1, 1; 1, 2; 2, 1];   % 约束条件矩阵
b = [2; 2; 3];   % 约束条件边界向量
lb = [0; 0];   % 变量下界
ub = [4; inf];   % 变量上界
 
% 求解混合整数线性规划松弛问题
options = optimoptions('intlinprog','Display','off');
[x,fval,exitflag,output] = intlinprog(f,A,b,[],[],lb,ub,[],options);
 
% 输出结果
disp(['Solution: x = [', num2str(x), ']']);
disp(['Optimal value: fval = ', num2str(fval)]);

在上述代码中,首先定义了问题的目标函数系数、约束条件矩阵、约束条件边界向量、变量下界和变量上界。然后,使用intlinprog函数求解混合整数线性规划松弛问题。在调用intlinprog函数时,指定了目标函数的系数、约束条件矩阵、约束条件边界向量、变量下界和变量上界。此外,还指定了选项options,将Display设置为off,以关闭输出信息。最后,输出了解和最优值的解决方案。

需要注意的是,混合整数线性规划松弛问题可能存在多个最优解或无解的情况。因此,在使用intlinprog函数时,需要仔细检查输出结果,以确保得到的是最优解或无解的情况。

四、MATLAB 的优化工具箱实现混合整数线性规划 (MILP) 算法

要在 MATLAB 中实现混合整数线性规划 (MILP) 算法,可以使用 MATLAB 的优化工具箱,该工具箱包含了很多用于求解 MILP 问题的算法。下面是一个简单的示例代码,演示如何使用 MATLAB 的优化工具箱求解 MILP 问题:

% 定义 MILP 问题的目标函数和约束条件
f = [-1; -2]; % 目标函数的系数
A = [1, 1; -1, 2; 2, 1]; % 不等式约束条件的系数矩阵
b = [2; 2; 3]; % 不等式约束条件的右侧向量
Aeq = [1, 1; 2, 1]; % 等式约束条件的系数矩阵
beq = [2; 3]; % 等式约束条件的右侧向量
lb = [0; 0]; % 决策变量的下界
ub = []; % 决策变量的上界(无上界)
intcon = [1; 2]; % 整数约束条件的索引向量


% 使用 MATLAB 的优化工具箱求解 MILP 问题
opts = optimoptions('mipgap', 0.05); % 设置求解器的参数
MIP_model = createMipsModel('f', f, 'A', A, 'b', b, 'Aeq', Aeq, 'beq', beq, 'lb', lb, 'ub', ub, 'intcon', intcon, 'Display', 'iter', 'Options', opts);
[x, fval, exitflag, output] = solveMipsModel(MIP_model);


% 输出结果
disp('Solution status:');
disp(output.status);
disp('Solution:');
disp(x);
disp('Objective value:');
disp(fval);

在上面的代码中,首先定义了 MILP 问题的目标函数和约束条件,然后使用 MATLAB 的优化工具箱创建了一个 MIP 模型,并使用 solveMipsModel 函数求解该模型,使用的是 optimoptions 函数来设置求解器的参数,其中 mipgap 表示求解器在找到可行解后停止搜索的最小 MIP 间隙(即目标函数值与可行解之间的差值)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1256540.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 进阶(十一):高精度计算(decimal 模块)

《Python入门核心技术》专栏总目录・点这里 文章目录 1. 导入decimal模块2. 设置精度3. 创建Decimal对象4. 基本运算5. 比较运算6. 其他常用函数7. 注意事项8. 总结 大家好&#xff0c;我是水滴~~ 在进行数值计算时&#xff0c;浮点数的精度问题可能会导致结果的不准确性。为了…

【研究中】sql server权限用户设置23.11.26

--更新时间2023.11.26 21&#xff1a;30 负责人&#xff1a;jerrysuse DBAliCMSIF EXISTS (select * from sysobjects where namehkcms_user)--判断是否存在此表DROP TABLE hkcms_user CREATE TABLE hkcms_user (id int primary key identity(1, 1),username char(32) NOT N…

【多线程】-- 03 龟兔赛跑案例线程创建方法之三:Callable接口

多线程 2 线程创建 【续】2.2 龟兔赛跑案例 首先需要一个赛道距离&#xff0c;然后会距离终点越来越近判断比赛是否结束打印出胜利者龟兔赛跑开始故事中是乌龟获胜&#xff0c;兔子需要睡觉&#xff0c;所以要模拟兔子睡觉最终&#xff0c;乌龟赢得比赛 package com.duo.de…

【Spring MVC】Filter 过滤器异常处理 HandlerExceptionResolver 分析

文章目录 前言版本说明测试 Demo1、自定义过滤器 DemoFilter2、自定义业务异常 ServiceException3、自定义异常处理类 DemoExceptionHandler4、DemoController5、请求测试 问题分析1、日志打印记录2、Debug 方法 解决方案1、修改自定义过滤器2、请求测试 解决方案分析1、日志打…

Linux uname命令教程:如何打印linux操作系统名称和硬件的基本信息(附实例教程和注意事项)

Linux uname命令介绍 uname命令是一个在Linux中常用的命令行工具&#xff0c;用于打印有关操作系统名称和系统硬件的基本信息。uname这个名字来源于"UNIX name"。它最常用于确定处理器架构&#xff0c;系统主机名和系统上运行的内核版本。 Linux uname命令适用的Li…

Ceph的监控工具Dashboard安装部署,详细实战过程

Ceph的监控工具Dashboard安装部署 还是用之前的集群&#xff0c;老规矩&#xff0c;没有主机名的是所有节点都执行 安装mgr-dashboard&#xff0c;每个节点都要安装 yum install -y ceph-mgr-dashboard开启MGR的功能 ceph mgr module enable dashboard查看开启的模块 [root…

《一个人的朝圣》读后感

最近一周看了一本《一个人的朝圣》&#xff0c;读后汇总些文字&#xff0c;便于后续查阅&#xff01; 65岁的哈罗德&#xff0c;始终过着轨迹类似的人生。在某一天&#xff0c;由于一封信&#xff0c;却使他的内心深处产生了某种信念。他迈开艰难的脚步&#xff0c;强忍住关节的…

U-boot(五):启动内核

本文主要探讨210的uboot启动内核过程。 嵌入式系统状态启动 未上电时bootloader、kernel、rootfs以镜像形式存储在启动介质中(X210为iNand/SD卡),运行时搬运到DDR中 未上电时u-boot.bin,zImage,rootfs在SD卡中各自对应的分区中,启动时去对应分区寻找(分区表一…

PWM(PulseWidthModulation)控制

PWM&#xff08;Pulse Width Modulation&#xff09;控制就是对脉冲的宽度进行调制的技术&#xff0c;即通过对一系列脉冲的宽度进行调制&#xff0c;来等效的获得所需要的波形&#xff08;含形状和幅值&#xff09;&#xff1b;面积等效原理是PWM技术的重要基础理论&#xff1…

HTTP协议发展

HTTP 1.0 -> HTTP 1.1 -> HTTP 2.0 -> HTTP 3.0 (QUIC) 每一代HTTP解决了什么问题&#xff1f; 下图说明了主要功能。 HTTP 1.0 于 1996 年最终确定并完整记录。对同一服务器的每个请求都需要单独的 TCP 连接。 HTTP 1.1 于 1997 年发布。TCP 连接可以保持打开状态…

漏电流直流互感器正负1-50ua

1/ 互感线圈 01 双绕组800t / 200t 互感线圈 02 单绕组 1120t

PTA-7-53 身份证排序

题目&#xff1a; 输入n&#xff0c;然后连续输入n个身份证号。 将每个身份证的年月日抽取出来&#xff0c;按年-月-日格式组装&#xff0c;然后对组装后的年-月-日升序输出。 根据题目要求&#xff0c;代码实现如下&#xff1a; import java.util.Scanner; import java.uti…

【源码解析】聊聊SpringBoot自动装配如何实现的

Springboot的习惯优于配置&#xff0c;其实就是默认装配一些配置&#xff0c;。对于整体的开发、部署提升了效率。我们直接写一个main类就可以快速开发了。 比如我们引入web的starter-web&#xff0c;那么就引入了web的框架。 <dependency><groupId>org.springfra…

设计模式之十二:复合模式

模式通常被一起使用&#xff0c;并被组合在同一个解决方案中。 复合模式在一个解决方案中结合两个或多个模式&#xff0c;以解决一般或重复发生的问题。 首先重新构建鸭子模拟器&#xff1a; package headfirst.designpatterns.combining.ducks;public interface Quackable …

关于微服务的思考

目录 什么是微服务 定义 特点 利弊 引入时机 需要哪些治理环节 从单体架构到微服务架构的演进 单体架构 集群和垂直化 SOA 微服务架构 如何实现微服务架构 服务拆分 主流微服务解决方案 基础设施 下一代微服务架构Service Mesh 什么是Service Mesh&#xff1f…

模拟电子技术Ⅲ-场效应管的分析

场效应管的定义 场效应管是单极性管&#xff1a;参与导电的是多数载流子&#xff0c;要么是自由电子&#xff0c;要么是空穴&#xff0c; 场效应管有三个极&#xff1a;源极&#xff08;s&#xff09;、栅极&#xff08;g&#xff09;、漏极&#xff08;d&#xff09;&#xf…

如何在gitlab上使用hooks

参考链接&#xff1a;gitlab git hooks 1. Git Hook 介绍 与许多其他版本控制系统一样&#xff0c;Git 有一种方法可以在发生某些重要操作时&#xff0c;触发自定义脚本&#xff0c;即 Git Hook&#xff08;Git 钩子&#xff09;。 当我们初始化一个项目之后&#xff0c;.git…

机器学习库:numpy

☁️主页 Nowl &#x1f525;专栏《机器学习实战》 《机器学习》 &#x1f4d1;君子坐而论道&#xff0c;少年起而行之 文章目录 写在开头 基本数据格式 array 数据定位 argmax 数据生成 random.rand random.randn random.randint 维度拓展 expand_dim 结语 写在…

MutationObserver 监视 DOM 树改变的api

1、介绍 MutationObserver是一个构造函数&#xff0c;可以用来监听某个节点的变化&#xff0c;当节点发生变化时&#xff0c;可以执行一些回调函数。 它不会立即执行&#xff0c;需要调用MutationObserver的observe方法&#xff0c;传入你想要监听的节点&#xff0c;以及一些配…

Proteus仿真--基于ADC0832的可调频率波形输出

本文介绍基于ADC0832的可调频率波形输出&#xff08;完整仿真源文件及代码见文末链接&#xff09; 仿真图如下 本设计中80C51单片机作为主控&#xff0c;用数码管作为显示模块&#xff0c;频率采集选用ADC0832芯片 仿真运行视频 Proteus仿真--基于ADC0832的可调频率波形输出…