【深度学习】因果推断与机器学习的高级实践 | 数学建模

news2024/11/30 8:39:14

文章目录

  • 因果推断
  • 因果推断的前世今生
    • (1)潜在结果框架(Potential Outcome Framework)
    • (2)结构因果模型(Structual Causal Model,SCM)

身处人工智能爆发式增长时代的机器学习从业者无疑是幸运的,人工智能如何更好地融入人类生活的方方面面是这个时代要解决的重要问题。滴滴国际化资深算法工程师王聪颖老师发现,很多新人在入行伊始,往往把高大上的模型理论背得滚瓜烂熟,而在真正应用时却摸不清门路、抓不住重点,导致好钢没用到刀刃上,无法取得实际的业务收益。如果能有一本指导新人从入门到精通、从理论到实践的技术书籍,那该多好,这样不仅省去了企业培养新人的成本,也留给了新人自我学习成长的空间。

本着这个初心,王老师花了将近一年的业余时间来复盘总结了自己以及身边同事从小白成长为独当一面的合格算法工程师的成长历程和项目经验,最终以理论结合实践的方式写入《机器学习高级实践:计算广告、供需预测、智能营销、动态定价》这本书中,希望能通过他的经验,真正地帮助到对机器学习算法感兴趣的读者。请添加图片描述

《机器学习高级实践:计算广告、供需预测、智能营销、动态定价》

作者:王聪颖  谢志辉

因果推断

在这里插入图片描述
因果推断是近年来机器学习领域新兴的一个分支,它主要解决“先有鸡还是先有蛋”的问题。因此,因果推断和关联关系最主要的区别是:因果推断是试图通过变量X的变化推断其对结果Y带来的影响有多少,而关联关系则侧重于表达变量之间的趋势变化,如两个变量图片之间有相关性关系,如果图片随着图片的递增而递增,则说明图片和图片正相关,如果图片随着图片递增而下降,则说明两者负相关。因此因果性(Causality)和相关性(Correlation)有着本质的不同,为了帮助读者更好地理解,这里举个例子:
某研究表明,吃早饭的人比不吃早饭的人体重更轻,因此“专家”得出结论——吃早饭可以减肥。但事实上,吃早饭和体重轻很有可能只是相关性关系,而并非因果关系。吃早饭的人可能是因为三餐规律、经常锻炼、睡眠充足等等一系列健康的生活方式,最终导致了他们的体重更轻。图1所示为因果推断中的混杂因子,描述了健康的生活方式、吃早饭、体重轻三者的关系。
请添加图片描述
很显然,拥有健康的生活方式的人会吃早餐,健康生活方式同时也会导致体重轻,可见健康的生活方式是吃早餐和体重轻的共同原因。正是因为有这样的共同原因存在,导致我们不能轻易地得出吃早餐和体重轻之间存在因果关系,所以我们认为“专家”的结论是草率的。吃早餐和减肥之间只存在相关性,不存在因果性,并把这种阻断因果关系推断的共同原因称之为混杂因子。那么如图1右所示,消除混杂因子,寻找两个变量之间的因果关系,并量化出来某种自变量X的改变,影响了因变量Y的改变程度是因果推断主要探讨的内容。

因果推断的前世今生

在这里插入图片描述

(1)潜在结果框架(Potential Outcome Framework)

在介绍潜在结果框架之前,先列出两个需要声明的假设来描述个体因果效应,另外需要注意的是为了更快的帮助大家入门,本文只描述二元处理,即个体只有接受处理和不接受处理两种情况,并对应两种处理方式的结果。
请添加图片描述
但是在现实世界中,个体图片在同一时刻要么接受处理,要么不接受处理,不可能同时既接受处理又不接受处理,因此个体因果作用是不可识别的,个体的观测数据结果图片

在已知个体因果作用无法识别的情况下,如何进行因果推断呢?或许把因果作用的识别从个体转移到了总体身上是个行之有效的解决方案,于是便有了平均因果作用(ATE,
Average Treatment
Effect)的概念。平均因果作用不再比较个体的因果作用,而是比较两组群体在不同的处理下的潜在结果,这两组群体除了接受的处理不同之外,必须具有同质的属性,这样计算出的平均因果作用才能无偏,随机对照实验(Random
controlled Trial,RCT)是保证两组群里无偏性的基本实验方法。把全量数据随机分为实验组(Treatment
Group)和对照组(Control
Group),其中实验组的T=1,对照组的T=0,那么平均因果作用的公式如下:请添加图片描述

其中Y(1)和Y(0)分别是接受处理情况下实验组的结果和不接受处理情况下对照组的结果。至此,潜在结果框架下做因果推断的基本理论知识已经讲解完毕,归纳起来主要有以下两点。
1)随机对照试验保证组别的同质性。

2)从不可评估的个体因果作用转移向评估总体的平均因果效应。

(2)结构因果模型(Structual Causal Model,SCM)

有向无环图是由节点和有向边组成的,有向边的上游是父节点,有向边指向的方向是子节点。在DAG中的某个节点的父节点与其非子节点都独立,根据全概率公式和条件独立性,一个有向无环图中的所有节点的联合概率分布可以表达为:
在这里插入图片描述
其中图片是所有指向图片的父节点,为了更好地帮助读者理解有向无环图中的联合分布表达,这里给出一个具体的DAG实例,如图2所示。请添加图片描述
根据有向无环图的条件独立性和联合概率分布的公式,图2的联合分布可以表达为:请添加图片描述
每一个有向无环图产出了唯一的联合分布,但是一个联合分布不一定只对应着一个有向无环图,比如图片的联合概率分布有可能是图片,也可能是图结构图片,而两种图结构的因果关系完全相反,这也正是贝叶斯网络不适合做因果模型的原因。为了把DAG改造成可以表达因果关系的因果图,需要引入do算子。这里的do算子就表达的是一种干预,图片表示将指向节点图片的有向边全部切除掉,并且节点图片赋值为常数,在do算子干预后,DAG的联合概率分布有了变化,表达为如下的形式:请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

在图3的链式、叉式、反叉式三种路径结构中,反叉式结构中的A、C天然相互独立,B又被称为对撞子,链式或者叉式结构,以B为条件可以阻断A和C之间的关联关系,从而实现A、C相互独立。d-分离就是为了达到变量独立的目的,而对不同的路径结构采取的阻断的操作,具体的d-分离法则归纳起来如下。
1)当某条路径上有两个箭头同时指向某个变量时,那这个变量称之为对撞子,并且这条路径被对撞子阻断。
2)如果某条路径含有非对撞子,那么当以非对撞子为条件时,这条路径可以被阻断。
3)当某条路径以对撞子为条件时,这条路径不仅不会被阻断,反而会被打开。

这里需要注意的是,以某个变量为条件指的是指定某个变量的值,比如以年龄这个变量为条件,就是指定年龄为0或者1。
在了解d-分离法则是可以通过以某个变量为条件进行阻断,从而实现变量间的独立之后,便可以结合后门准则消除混杂因子对未知结构的因果图进行因果推断了。在弄清楚后门准则之前,需要了解后门路径、前门路径的概念。从变量X到变量Y的后门路径就是连接X到Y,但是箭头不从X出发的路径,与之相应的前门路径是连接X到Y且箭头从X出发的路径,后门准则的定义是可以通过d-分离阻断X和Y之间所有的后门路径,那么我们认为可以识别从X到Y之间的因果关系,并把阻断后门路径的因子称之为混杂因子。至此,知道了后门准则的方法无须观测到所有的变量,只需要观测到以哪个变量为条件可以消除后门路径,从而使得X到Y之间的因果关系可识别。
在这里插入图片描述
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1253562.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VCenter6.7 Web访问提示503 Service Unavailable

PS:本文分享VMware Vcenter在web登录的时候报错:503 Service Unavailable,对于6.7.x版本比较适用,其他版本需自行测试。 简单来讲就是需要重启一下vsphre-client服务,如重启该服务仍无法解决,可以尝试重启一…

Windows系统管理之备份与恢复

本章目录: 一. 本章须知: 前置条件 需要创建一个新的磁盘 前置条件2 给新添加的磁盘分盘 二. 了解开启并学会使用Windows sever backup 如何使用备份与恢复“备份计划”“一次性备份”“恢复” 最后是用命令行“一次性备份命令 ”完成一次备份 话不多说 …

MyBatis框架_01

Web后端开发_03 MyBatis框架 什么是MyBatis? MyBatis是一款优秀的持久层框架,用于简化JDBC的开发。MyBatis本是 Apache的一个开源项目iBatis,2010年这个项目由apache迁移到了google code,并且改名为MyBatis 。2013年11月迁移到Github。官网…

MSI Center,XBox从任务栏取消固定

1,设置查看方式中隐藏项目可见 2,进入文件夹:C:\Users\Default\AppData\Local\Microsoft\Windows\Shell 找到下面这两个文件夹: 3,修改文件名或者删除这两个文件即可

从0开始学习JavaScript--JavaScript函数返回值

在JavaScript中,函数是一种强大的工具,不仅能够执行一系列操作,还可以返回值。理解函数返回值的概念对于编写清晰、灵活的代码至关重要。本文将深入探讨JavaScript函数返回值的各种方面,包括基本返回值、多返回值、异步函数的返回…

NoSQL基础知识小结

NoSQL 基础知识 什么是 NoSQL? NoSQL(Not Only SQL 的缩写)泛指非关系型的数据库,主要针对的是键值、文档以及图形类型数据存储。 NoSQL 数据库天生支持分布式,数据冗余和数据分片等特性,旨在提供可扩展的高可用高…

超越噪音,让音乐重获新生:iZotope RX 10音频降噪修复软件

在音乐制作或者音频处理的过程中,噪音往往是一个让人头痛的问题。无论是环境噪音,还是设备产生的噪音,都会对音频质量产生重大影响。而现在,我们有了iZotope RX 10,这款专业的音频降噪修复软件,可以将你从噪…

HCIA题目解析(1)

1、【多选题】关于动态 MAC 地址表说法正确的是? A、通过报文中的源MAC地址学习获得的动态MAC表项会老化 B、通过查看指定动态MAC地址表项的个数,可以获取接口下通信的用户数 C、在设备重启后,之前的动态表项会丢失 D、在设备重启后&…

leetCode 100. 相同的树 和 leetCode 101. 对称二叉树 和 110. 平衡二叉树 和 199. 二叉树的右视图

1.leetCode 100. 相同的树 C代码: class Solution { public:bool isSameTree(TreeNode* p, TreeNode* q) {if(p nullptr || q nullptr) return pq;return p->val q->val && isSameTree(p->left,q->left) && isSameTree(p->righ…

2 时间序列预测入门:GRU

0 论文地址 GRU 原论文:https://arxiv.org/pdf/1406.1078v3.pdf GRU(Gate Recurrent Unit)是循环神经网络(RNN)的一种,可以解决RNN中不能长期记忆和反向传播中的梯度等问题,与LSTM的作用类似&a…

基于卷积优化算法优化概率神经网络PNN的分类预测 - 附代码

基于卷积优化算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于卷积优化算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于卷积优化优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

深度学习之基于YoloV3杂草识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 深度学习在图像识别领域已经取得了显著的成果,其中基于YOLO(You Only Look Once&#xff09…

1.1 半加器

输入1输入2结果进位0000101001101101 半加器: 实现1位的加法 根据结果可知输入1与输入2相加结果 -> 符合 异或门进位 -> 符合 与门最终要么有结果要么有进位,不存在即有结果也有进位 异或门的实现也可以由基本的3个 “与或非” 门实现 与:& , 或:| , 非:! 用这3个…

2. 寄存器

锁存器,用于存储1位的电路 只有当 可写位(write enable)开启,才会把输入写到输出,同时保存输出 使用锁存器 带时钟的锁存器 带时钟带可写控制的完整版锁存器 下面的时钟使用按钮来代替, 只有按钮为1时,相连的电路才工作时钟的作用在于协同所有电路共同工作,也是一切电路自动化…

android shape绘制半圆

<?xml version"1.0" encoding"utf-8"?><shape xmlns:android"http://schemas.android.com/apk/res/android"android:shape"rectangle"><sizeandroid:width"20dp"android:height"10dp" /><…

山西电力市场日前价格预测【2023-11-26】

日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2023-11-26&#xff09;山西电力市场全天平均日前电价为144.57元/MWh。其中&#xff0c;最高日前电价为341.24元/MWh&#xff0c;预计出现在08:00。最低日前电价为0.00元/MWh&#xff0c;预计出…

从0到0.01入门 Webpack| 007.精选 Webpack面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

Android仿 美团 / 饿了么,店铺详情页功能

前言 UI有所不同&#xff0c;但功能差不多&#xff0c;商品添加购物车功能 正在写&#xff0c;写完会提交仓库。 页面主要由&#xff1a;MagicIndicator ViewPager2 Fragment CoordinatorLayout NestedScrollView RecyclerView实现。 效果图一&#xff1a;左右RecyclerV…

4.前端--HTML标签3【2023.11.25】

1.表格 1.1表格的作用 表格的作用&#xff1a;表格主要用于显示、展示数据 1.2表格的基本格式 <table><tr><td>单元格内的文字</td><td>单元格内的文字</td>...</tr>... </table><table> </table> 是用于定义表…

⑩【Redis Java客户端】:Jedis、SpringDataRedis、StringRedisTemplate

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ Jedis、SpringDataRedis、StringRedisTemplate…