前言
作者:小蜗牛向前冲
名言:我可以接受失败,但我不能接受放弃
如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正
目录
一、红黑树的基本知识
1、红黑树的概念
2、性质
二、红黑树的模拟实现
1、节点的定义
2、红黑树的插入
三、红黑树的测试
1、验证的准备工作
2、测试用例
3、完整代码实现
四、AVL树和红黑树的比较
本期学习目标:什么是红黑树,红黑树是怎么实现的,红黑树的测试,红黑树和AVL树的对比
一、红黑树的基本知识
1、红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍(最长路径吧会超过最短路径的2倍),因而是接近平衡的。
2、性质
- 每个结点不是红色就是黑色。
- 根节点是黑色的 。
- 如果一个节点是红色的,则它的两个孩子结点是黑色的。(没有连续的红节点)
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 。(每条路径下都包含相同的黑节点)
- 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)。
推论:
- 最短路径:全部由黑节点组成
- 最长路径:一黑一红,红节点数量 == 黑节点数量
这里我们思考一下,红黑树是如何保证:最长路径不超过最短路径的2倍?
- 由推论2可知,对于最长路经,就是一红一黑,而且红节点数量等于黑节点数量,
- 在由推论1可知,最短路径节点数量全为黑。
- 在由性质4可知,每条路径的黑节点数量都相同,这就保证了最长路径不超过2倍的最短路径。
二、红黑树的模拟实现
1、节点的定义
enum Colour
{
RED,
BLACK,
};
template<class K,class V>
struct RBTreeNode
{
pair<K, V> _kv;
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
:_kv(kv)
,_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_col(RED)
{}
};
2、红黑树的插入
根据节点的定义,我们上面定义了一个枚举类型了存放显色的类型,RED和BLACK,但是我们在插入节点的时候是定义红色还是黑色呢?我们在上面定义的是红色为什么呢?
这里分类讨论一下:
定义新插入节点为黑色:
就会破坏性质4,导致每天路径的黑色节点数量不同
定义新插入节点为红色:
可能会破坏性质3,导致出现连续的红节点,但是这样也仅仅影响的是一条路径,影响有限。
综上所述:所以我们选择插入节点为红色。
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
1. 按照二叉搜索的树规则插入新节点
2.检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点(p:parent g:grandfather u:uncle)
当p为g的左孩子时,有3种情况需要讨论
情况1:
情况2:
情况3:
当p为g的右孩子时,也有3种情况需要讨论
这里的讨论和上面相似,处理方法也相似:
情况1:
情况2:
情况3:
代码实现:
bool insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
//找到插入位置
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
//到左子树找
if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;
}
}
//找到了
cur = new Node(kv);
cur->_col = RED;//默认颜色为红色
//链接节点
if (parent->_kv.first > kv.first)
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
//插入后要调整红黑树
//如果父亲存在且为红色
while (parent && parent->_col == RED)
{
Node* grandparent = parent->_parent;
//情况1:cur为红色,p和u都为红色,g为黑色,这里的u是存在的
//解决方法:p和n都变黑,g变红,在把cur当做g继续调整
if (parent == grandparent->_left)
{
Node* uncle = grandparent->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandparent->_col = RED;
cur = grandparent;
//更新parent
parent = cur->_parent;
}
else//情况2+3 uncle存在且为黑色或者uncle不存在
{
if (cur == parent->_left)
{
//情况2
//解决方法:右单旋,将p变黑,g变红
RotateR(grandparent);
parent->_col = BLACK;
grandparent->_col = RED;
}
else//情况3:双旋转
{
RotateL(parent);
RotateR(grandparent);
grandparent->_col = RED;
cur->_col = BLACK;//双旋转后cur变为了根
}
//这里类比根节点为色,不需要在调整了
break;
}
}
else//grandparent->right == parent
{
//这里也是和上面一样分为三种情况
Node* grandparent = parent->_parent;
Node* uncle = grandparent->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandparent->_col = RED;
cur = grandparent;
//更新parent
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandparent);//左单旋转
parent->_col = BLACK;
grandparent->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandparent);
grandparent->_col = RED;
cur->_col = BLACK;//双旋转后cur变为了根
}
break;
}
}
}
//调整完成,把根节点变黑
_root->_col = BLACK;
return true;
}
//右单旋
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
Node* grandparent = parent->_parent;
//让subLR变为parent的左,
parent->_left = subLR;
//这里要判断一下subLR不为空
if (subLR)
{
subLR->_parent = parent;
}
//parent变为subL的右
subL->_right = parent;
parent->_parent = subL;
//parent就是为根
if (grandparent == nullptr)
{
_root = subL;
subL->_parent = grandparent;
}
else
{
//parnet是上grandparent的左子树
if (grandparent->_left == parent)
{
grandparent->_left = subL;
}
else
{
grandparent->_right = subL;
}
subL->_parent = grandparent;
}
}
//左单旋
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
Node* ppNode = parent->_parent;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
parent->_parent = subR;
//parnet为根,要更新根
if (ppNode == nullptr)
{
_root = subR;
subR->_parent = ppNode;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
}
三、红黑树的测试
1、验证的准备工作
-
检测其是否满足二叉搜索树(中序遍历是否为有序序列)
-
检测其是否满足红黑树的性质
检测方法:
1、根节点是黑色,否则不是红黑树
2、当前节点是红色,去检测父亲节点,父亲节点也是红色,则不是红黑树
3、以最左侧路径的黑色节点为基准,其它路径上的黑色节点与基准不相等,不是红黑树
检验代码:
void Inorder()
{
_Inorder(_root);
}
void _Inorder(Node* root)
{
if (root == nullptr)
return;
_Inorder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_Inorder(root->_right);
}
bool Check(Node* root, int blackNum, const int ref)
{
if (root == nullptr)
{
//已经递归到最深处进行,本路径的黑节点树和ref数量对比
if (blackNum != ref)
{
cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;
return false;
}
return true;
}
if (root->_col == RED && root->_parent->_col == RED)
{
cout << "违反规则:出现连续红色节点" << endl;
return false;
}
if (root->_col == BLACK)
{
++blackNum;
}
return Check(root->_left, blackNum, ref)
&& Check(root->_right, blackNum, ref);
}
bool IsBalance()
{
if (_root == nullptr)
{
return true;
}
if (_root->_col != BLACK)
{
return false;
}
//求出最左路节点有多少个黑节点
int ref = 0;
Node* left = _root;
while (left)
{
if (left->_col == BLACK)
{
++ref;
}
left = left->_left;
}
return Check(_root, 0, ref);
}
2、测试用例
这里我们借用上面AVL树的测试用例即可
void TestRBTree1()
{
//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
RBTreeh<int, int> t;
for (auto e : a)
{
/*if (e == 18)
{
int x = 0;
}*/
t.insert(make_pair(e, e));
cout << "insert" << e << ":" << t.IsBalance() << endl;
}
t.Inorder();
cout << t.IsBalance() << endl;
}
void TestRBTree2()
{
srand(time(0));
const size_t N = 100000;
RBTreeh<int, int> t;
for (size_t i = 0; i < N; ++i)
{
size_t x = rand();
t.insert(make_pair(x, x));
//cout << t.IsBalance() << endl;
}
//t.Inorder();
cout << t.IsBalance() << endl;
}
3、完整代码实现
#pragma once
enum Colour
{
RED,
BLACK,
};
template<class K,class V>
struct RBTreeNode
{
pair<K, V> _kv;
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
:_kv(kv)
,_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_col(RED)
{}
};
template<class K,class V>
class RBTreeh
{
typedef RBTreeNode<K,V> Node;
public:
bool insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
//找到插入位置
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
//到左子树找
if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;
}
}
//找到了
cur = new Node(kv);
cur->_col = RED;//默认颜色为红色
//链接节点
if (parent->_kv.first > kv.first)
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
//插入后要调整红黑树
//如果父亲存在且为红色
while (parent && parent->_col == RED)
{
Node* grandparent = parent->_parent;
//情况1:cur为红色,p和u都为红色,g为黑色,这里的u是存在的
//解决方法:p和n都变黑,g变红,在把cur当做g继续调整
if (parent == grandparent->_left)
{
Node* uncle = grandparent->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandparent->_col = RED;
cur = grandparent;
//更新parent
parent = cur->_parent;
}
else//情况2+3 uncle存在且为黑色或者uncle不存在
{
if (cur == parent->_left)
{
//情况2
//解决方法:右单旋,将p变黑,g变红
RotateR(grandparent);
parent->_col = BLACK;
grandparent->_col = RED;
}
else//情况3:双旋转
{
RotateL(parent);
RotateR(grandparent);
grandparent->_col = RED;
cur->_col = BLACK;//双旋转后cur变为了根
}
//这里类比根节点为色,不需要在调整了
break;
}
}
else//grandparent->right == parent
{
//这里也是和上面一样分为三种情况
Node* grandparent = parent->_parent;
Node* uncle = grandparent->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandparent->_col = RED;
cur = grandparent;
//更新parent
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandparent);//左单旋转
parent->_col = BLACK;
grandparent->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandparent);
grandparent->_col = RED;
cur->_col = BLACK;//双旋转后cur变为了根
}
break;
}
}
}
//调整完成,把根节点变黑
_root->_col = BLACK;
return true;
}
//右单旋
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
Node* grandparent = parent->_parent;
//让subLR变为parent的左,
parent->_left = subLR;
//这里要判断一下subLR不为空
if (subLR)
{
subLR->_parent = parent;
}
//parent变为subL的右
subL->_right = parent;
parent->_parent = subL;
//parent就是为根
if (grandparent == nullptr)
{
_root = subL;
subL->_parent = grandparent;
}
else
{
//parnet是上grandparent的左子树
if (grandparent->_left == parent)
{
grandparent->_left = subL;
}
else
{
grandparent->_right = subL;
}
subL->_parent = grandparent;
}
}
//左单旋
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
Node* ppNode = parent->_parent;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
parent->_parent = subR;
//parnet为根,要更新根
if (ppNode == nullptr)
{
_root = subR;
subR->_parent = ppNode;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
}
void Inorder()
{
_Inorder(_root);
}
void _Inorder(Node* root)
{
if (root == nullptr)
return;
_Inorder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_Inorder(root->_right);
}
bool Check(Node* root, int blackNum, const int ref)
{
if (root == nullptr)
{
//已经递归到最深处进行,本路径的黑节点树和ref数量对比
if (blackNum != ref)
{
cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;
return false;
}
return true;
}
if (root->_col == RED && root->_parent->_col == RED)
{
cout << "违反规则:出现连续红色节点" << endl;
return false;
}
if (root->_col == BLACK)
{
++blackNum;
}
return Check(root->_left, blackNum, ref)
&& Check(root->_right, blackNum, ref);
}
bool IsBalance()
{
if (_root == nullptr)
{
return true;
}
if (_root->_col != BLACK)
{
return false;
}
//求出最左路节点有多少个黑节点
int ref = 0;
Node* left = _root;
while (left)
{
if (left->_col == BLACK)
{
++ref;
}
left = left->_left;
}
return Check(_root, 0, ref);
}
private:
Node* _root = nullptr;
};
void TestRBTree1()
{
//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
RBTreeh<int, int> t;
for (auto e : a)
{
/*if (e == 18)
{
int x = 0;
}*/
t.insert(make_pair(e, e));
cout << "insert" << e << ":" << t.IsBalance() << endl;
}
t.Inorder();
cout << t.IsBalance() << endl;
}
//void TestRBTree2()
//{
// srand(time(0));
// const size_t N = 100000;
// RBTreeh<int, int> t;
// for (size_t i = 0; i < N; ++i)
// {
// size_t x = rand();
// t.insert(make_pair(x, x));
// //cout << t.IsBalance() << endl;
// }
//
// //t.Inorder();
// cout << t.IsBalance() << endl;
//}
四、AVL树和红黑树的比较
AVL树(Adelson-Velsky and Landis tree)和红黑树都是自平衡的二叉搜索树,它们在维持树的平衡性上采用了不同的策略。以下是它们之间的一些比较:
平衡性维护策略:
- AVL树: 通过保持任意节点的左右子树的高度差(平衡因子)不超过1来维护平衡。在每次插入或删除操作后,可能需要旋转来恢复平衡。
- 红黑树: 通过引入额外的颜色信息和一些规则,确保树的高度保持在较小的范围内。具体来说,红黑树的平衡性维护是通过节点的颜色和一些颜色约束来实现的。
平衡因子和颜色信息:
- AVL树: 使用平衡因子(Balance Factor)来表示每个节点左右子树的高度差。通常,平衡因子为 -1、0、1。
- 红黑树: 使用颜色信息(红色或黑色)来表示树的平衡状态。通过遵循红黑树的性质,确保了树的平衡。
旋转操作:
- AVL树: 插入或删除可能需要执行多次旋转操作,包括左旋、右旋、左右旋、右左旋等。
- 红黑树: 插入或删除通常只需要执行一到两次旋转操作,因为红黑树引入了颜色信息,更灵活地维持平衡。
性能影响:
- AVL树: 由于 AVL 树对平衡的要求更为严格,因此在插入和删除等操作时可能会导致更多的旋转,相对来说更耗费性能。
- 红黑树: 由于其相对宽松的平衡条件,红黑树在插入和删除等操作时通常执行的旋转较少,因此性能可能相对更好。
应用场景:
- AVL树: 适用于对搜索性能有较高要求的场景,例如在数据库中需要快速检索数据。
- 红黑树: 通常在需要高效的插入和删除操作的情况下使用,例如在集合类的实现中。
总体而言,选择 AVL 树还是红黑树取决于应用的特定需求。如果搜索操作远远超过插入和删除,可能更倾向于使用 AVL 树。而在插入和删除操作频繁的情况下,红黑树可能更为适用。