Java设计模式系列:单例设计模式

news2024/9/22 15:45:39

Java设计模式系列:单例设计模式

介绍

所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例,并且该类只提供一个取得其对象实例的方法(静态方法)

比如 Hibernate 的 SessionFactory,它充当数据存储源的代理,并负责创建 Session 对象。SessionFactory 并不是轻量级的,一般情况下,一个项目通常只需要一个 SessionFactory 就够,这是就会使用到单例模式

八种方式

  • 1)饿汉式(静态常量)

  • 2)饿汉式(静态代码块)

  • 3)懒汉式(线程不安全)

  • 4)懒汉式(线程安全,同步方法)

  • 5)懒汉式(线程不安全,同步代码块)

  • 6)双重检查

  • 7)静态内部类

  • 8)枚举

1、饿汉式(静态常量)

  • 1)构造器私有化(防止外部 new)

  • 2)类的内部创建对象

  • 3)向外暴露一个静态的公共方法 getInstance

package com.mcode.api.singleton.type1;

/**
 * ClassName: SingletonTest01
 * Package: com.mcode.api.singleton.type1
 * Description:
 *
 * @Author: robin
 * @Create: 2019/11/22 - 9:41 PM
 * @Version: v1.0
 */
public class SingletonTest01 {
    public static void main(String[] args) {
        Singleton instance = Singleton.getInstance();
        Singleton instance1 = Singleton.getInstance();
        System.out.println(instance == instance1); //true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance.hashCode=" + instance1.hashCode());
    }
}

//饿汉式(静态变量)
class Singleton {
    // 1、构造器私有化
    private Singleton() {
    }

    // 2、类的内部创建对象
    private static final Singleton instance = new Singleton();

    // 3、向外暴露一个静态的公共方法
    public static Singleton getInstance() {
        return instance;
    }
}

优缺点

  • 1)优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题

  • 2)缺点:在类装载的时候就完成实例化,没有达到 Lazy Loading 的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费

  • 3)这种方式基于 classloder 机制避免了多线程的同步问题。不过,instance 在类装载时就实例化,在单例模式中大多数都是调用getlnstance 方法,但是导致类装载的原因有很多种,因此不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 就没有达到 Lazy loading 的效果

  • 4)结论:这种单例模式可用,可能造成内存浪费

2、饿汉式(静态代码块)

  • 1)构造器私有化

  • 2)类的内部声明对象

  • 3)在静态代码块中创建对象

  • 4)向外暴露一个静态的公共方法

public class Singleton {
    // 1、构造器私有化
    private Singleton() {
    }

    // 2、类的内部声明对象
    private static Singleton instance;

    // 3、在静态代码块中创建对象
    static {
        instance = new Singleton();
    }

    // 4、向外暴露一个静态的公共方法
    public static Singleton getInstance() {
        return instance;
    }
}

优缺点

  • 1)这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。

  • 2)结论:这种单例模式可用,但是可能造成内存浪费

3、懒汉式(线程不安全)

  • 1)构造器私有化

  • 2)类的内部创建对象

  • 3)向外暴露一个静态的公共方法,当使用到该方法时,才去创建 instance

// 1、构造器私有化
private Singleton() {
}

// 2、类的内部声明对象
private static Singleton instance;

// 3、向外暴露一个静态的公共方法,当使用到该方法时,才去创建 instance
public static Singleton getInstance() {
    if (instance == null) {
        instance = new Singleton();
    }
    return instance;
}

优缺点

  • 1)起到了 Lazy Loading 的效果,但是只能在单线程下使用

  • 2)如果在多线程下,一个线程进入了判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例

  • 3)结论:在实际开发中,不要使用这种方式

4、懒汉式(线程安全,同步方法)

  • 1)构造器私有化

  • 2)类的内部创建对象

  • 3)向外暴露一个静态的公共方法,加入同步处理的代码,解决线程安全问题

public class Singleton {
    // 1、构造器私有化
    private Singleton() {
    }

    // 2、类的内部声明对象
    private static Singleton instance;

    // 3、向外暴露一个静态的公共方法,加入同步处理的代码,解决线程安全问题
    public static synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

优缺点

  • 1)解决了线程不安全问题

  • 2)效率太低了,每个线程在想获得类的实例时候,执行getlnstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接return就行了。方法进行同步效率太低

  • 3)结论:在实际开发中,不推荐使用这种方式

5、懒汉式(线程不安全,同步代码块)

  • 1)构造器私有化

  • 2)类的内部创建对象

  • 3)向外暴露一个静态的公共方法,加入同步处理的代码块

public class Singleton {
    // 1、构造器私有化
    private Singleton() {
    }

    // 2、类的内部声明对象
    private static Singleton instance;

    // 3、向外暴露一个静态的公共方法,加入同步处理的代码,解决线程安全问题
    public static Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class) {
                instance = new Singleton();
            }
        }
        return instance;
    }
}

优缺点

  • 1)这种方式,本意是想对第四种实现方式的改进,因为前面同步方法效率太低,改为同步产生实例化的的代码块

  • 2)但是这种同步并不能起到线程同步的作用。跟第3种实现方式遇到的情形一致,假如一个线程进入了判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例

  • 3)结论:在实际开发中,不能使用这种方式

6、双重检查

  • 1)构造器私有化

  • 2)类的内部创建对象,同时用volatile关键字修饰修饰

  • 3)向外暴露一个静态的公共方法,加入同步处理的代码块,并进行双重判断,解决线程安全问题

public class Singleton {
    // 1、构造器私有化
    private Singleton() {
    }

    // 2、类的内部声明对象,同时用`volatile`关键字修饰修饰
    private static volatile Singleton instance;

    // 3、向外暴露一个静态的公共方法,加入同步处理的代码块,并进行双重判断,解决线程安全问题
    public static Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

优缺点

  • 1)Double-Check 概念是多线程开发中常使用到的,我们进行了两次检查,这样就可以保证线程安全了

  • 2)这样实例化代码只用执行一次,后面再次访问时直接 return 实例化对象,也避免的反复进行方法同步

  • 3)线程安全;延迟加载;效率较高

  • 4)结论:在实际开发中,推荐使用这种单例设计模式

7、静态内部类

  • 1)构造器私有化

  • 2)定义一个静态内部类,内部定义当前类的静态属性

  • 3)向外暴露一个静态的公共方法

public class Singleton {
    // 1、构造器私有化
    private Singleton() {
    }

    // 2、定义一个静态内部类,内部定义当前类的静态属性
    private static class SingletonInstance {
        private static final Singleton instance = new Singleton();
    }

    // 3、向外暴露一个静态的公共方法
    public static Singleton getInstance() {
        return SingletonInstance.instance;
    }
}

优缺点

  • 1)这种方式采用了类装载的机制,来保证初始化实例时只有一个线程

  • 2)静态内部类方式在 Singleton 类被装载时并不会立即实例化,而是在需要实例化时,调用getlnstance方法,才会装载Singletonlnstance 类,从而完成 Singleton 的实例化

  • 3)类的静态属性只会在第一次加载类的时候初始化,JVM帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的

  • 4)优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高

  • 5)结论:推荐使用

8、枚举

public enum Singleton {
    INSTANCE;

    public void sayHello() {
        System.out.println("Hello World");
    }
}

优缺点

  • 1)这借助 JDK1.5 中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象

  • 2)这种方式是 Effective Java 作者 Josh Bloch 提倡的方式

  • 3)结论:推荐使用

JDK 源码分析

JDK中 java.lang.Runtime 就是经典的单例模式

注意事项和细节说明

  • 1)单例模式保证了系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能

  • 2)当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用 new

  • 3)单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多但又经常用到的对象(即:重量级对象)、工具类对象、频繁访问数据库或文件的对象(比如数据源、session 工厂等)

虽然上述提到的概念中,将双重检查、静态内部类、枚举三种方式的单例模式单独列举出来说明,但个人觉得本质也可以归类到饿汉式和懒汉式中;另外,同步代码块虽然上述中归类到线程安全,实际上并不是线程安全的

总结如下

  • |——饿汉式:静态常量、静态代码块、枚举(本质就是静态常量)

  • |——懒汉式

    • |——线程不安全:一次检查、同步代码块
    • |——线程安全:同步方法、双重检查、静态内部类

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1244902.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

西门子(Siemens)仿真PLC启动报错处理

目录 一、背景&#xff1a; 二、卸载软件 三、安装软件 三、启动软件 四、下载PORTAL项目 五、测试 一、背景&#xff1a; 在启动S7-PLCSIM Advanced V3.0仿真PLC时报错&#xff0c;报错信息为&#xff1a;>>Siemens PLCSIM Virtual Switch<<is misconfigu…

iframe内部子页面与外部主页面通讯

文章目录 一、问题二、解决2.1、子页面2.2、主页面 三、知识点3.1、[浏览器兼容性](https://developer.mozilla.org/zh-CN/docs/Web/API/Window/postMessage#%E6%B5%8F%E8%A7%88%E5%99%A8%E5%85%BC%E5%AE%B9%E6%80%A7)3.2、详解3.2.1、发送方3.2.2、接收方 一、问题 如上所示&a…

Vue3中如何响应式解构 props

目录 1&#xff0c;前言2&#xff0c;解决2.1&#xff0c;利用插件&#xff0c;实现编译时转换2.2&#xff0c;toRef 和 toRefs 1&#xff0c;前言 Vue3 中为了保持响应性&#xff0c;始终需要以 props.x 的方式访问这些 prop。这意味着不能够解构 defineProps 的返回值&#…

【云原生 Prometheus篇】Prometheus架构详解与核心组件的应用实例(Exporters、Grafana...)

Prometheus Part1 一、常用的监控系统1.1 简介1.2 Prometheus和zabbix的区别 二、Prometheus2.1 简介2.2 Prometheus的主要组件1&#xff09;Prometheus server2&#xff09;Exporters3&#xff09;Alertmanager4&#xff09;Pushgateway5&#xff09;Grafana 2.3 Prometheus的…

【性能优化】CPU利用率飙高与内存飙高问题

&#x1f4eb;作者简介&#xff1a;小明java问道之路&#xff0c;2022年度博客之星全国TOP3&#xff0c;专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化&#xff0c;文章内容兼具广度、深度、大厂技术方案&#xff0c;对待技术喜欢推理加验证&#xff0c;就职于…

解决:ImportError: cannot import name ‘Adam‘ from ‘keras.optimizers‘

解决&#xff1a;ImportError: cannot import name ‘Adam‘ from ‘keras.optimizers‘ 背景 在使用之前的代码时&#xff0c;报错&#xff1a; from keras.optimizers import Adam ImportError: cannot import name ‘Adam’ 报错问题 from keras.optimizers import Adam I…

【赠书第7期】从零基础到精通Flutter开发

文章目录 前言 1 安装Flutter和Dart 2 了解Flutter的基础概念 2.1 Widget 2.2 MaterialApp和Scaffold 2.3 Hot Reload 3 编写你的第一个Flutter应用 3.1 创建一个Flutter项目 3.2 修改默认页面 3.3 添加交互 4 深入学习Flutter高级特性 4.1 路由和导航 4.2 状态管…

「 系统设计 」 为什么要做架构分层?

「 系统设计 」 为什么要做架构分层&#xff1f; 参考&鸣谢 3.设计模式之分层思维&#xff1a;为什么要做代码分层架构&#xff1f; 从零开始学架构&#xff08;八&#xff09;分层架构和设计模式 架构模式之分层架构总结 文章目录 「 系统设计 」 为什么要做架构分层&…

【libGDX】使用Mesh绘制立方体

1 前言 本文主要介绍使用 Mesh 绘制立方体&#xff0c;读者如果对 Mesh 不太熟悉&#xff0c;请回顾以下内容&#xff1a; 使用Mesh绘制三角形使用Mesh绘制矩形使用Mesh绘制圆形 在绘制立方体的过程中&#xff0c;主要用到了 MVP &#xff08;Model View Projection&#xff0…

<JavaEE> 什么是进程(Process)?进程管理,进程调度,内存管理,进程间通信和多进程编程

目录 一、进程&#xff08;Process&#xff09;的概念 二、进程管理 三、进程调度 四、内存管理 五、进程间通信 六、多进程编程 一、进程&#xff08;Process&#xff09;的概念 进程&#xff08;process&#xff09;也称为任务&#xff08;task&#xff09;&#xff0c…

sam和mobilesam的c#调用dll

这个主要注意&#xff1a; 我原本从一个地方把这个工程拷贝到另一个地方&#xff0c;然后我看了解决方案下的依赖项是有感叹号的&#xff0c;且这个时候代码出现很多下划的波浪红线。 然后我的做法如下&#xff1a; 然后我发现一直添加不了opencvsharp的dll文件&#xff0c;报…

Adiponectin 脂联素 ; T-cadherin +exosome

T-cadherin Adiponectin exosome T-cadherin Adiponectin exosome 代谢综合征中 外泌体、脂肪组织 和 脂联素 的器官间通讯-2019.pdf

基于IDEA+HTML+SpringBoot前后端分离电子商城

基于springboot的电子商城 项目介绍&#x1f481;&#x1f3fb; •B2C 商家对客户 •C2B2C 客户对商家对客户 1.1.1 B2C 平台运营方即商品的卖家 小米商城 •商品 •用户 1.1.2 C2B2C 平台运营方不卖商品&#xff08;也可以卖&#xff09; 卖家是平台的用户 买家也是平台用户 •…

HarmonyOS(五)—— 认识页面和自定义组件生命周期

前言 在前面我们通过如何创建自定义组件一文知道了如何如何自定义组件以及自定义组件的相关注意事项&#xff0c;接下来我们认识一下页面和自定义组件生命周期。 自定义组件和页面的关系 在开始之前&#xff0c;我们先明确自定义组件和页面的关系 自定义组件&#xff1a;Co…

基于C#实现线段树

一、线段树 线段树又称"区间树”&#xff0c;在每个节点上保存一个区间&#xff0c;当然区间的划分采用折半的思想&#xff0c;叶子节点只保存一个值&#xff0c;也叫单元节点&#xff0c;所以最终的构造就是一个平衡的二叉树&#xff0c;拥有 CURD 的 O(lgN)的时间。 从…

解决:javax.websocket.server.ServerContainer not available 报错问题

原因&#xff1a; 用于扫描带有 ServerEndpoint 的注解成为 websocket&#xff0c;该方法是 服务器端点出口&#xff0c;当进行 SpringBoot 单元测试时&#xff0c;并没有启动服务器&#xff0c;所以当加载到这个bean时会报错。 解决方法&#xff1a; 加上这个注解内容 Spr…

不做机器视觉工程师,转行,转岗的建议与想法

正所谓外行看热闹&#xff0c;内行看门道。提前咨询前辈们&#xff0c;多问问&#xff0c;多看看。要做就做&#xff0c;一定要提前做好防范。 无论你是要转行或者是转岗&#xff0c;看你有没有本钱和试错成本 有些人&#xff0c;家庭好&#xff0c;可以一直去试错和从头再来。…

MySQL 8 配置文件详解与最佳实践

MySQL 8 是一款强大的关系型数据库管理系统&#xff0c;通过适当的配置文件设置&#xff0c;可以充分发挥其性能潜力。在这篇博客中&#xff0c;我们将深入探究 MySQL 8 常用的配置文件&#xff0c;并提供一些建议&#xff0c;帮助您优化数据库性能。 配置文件概览 在 MySQL …

4.常见面试题--操作系统

特点&#xff1a;并发性、共享性、虚拟性、异步性。 Windows 和 Linux 内核差异 对于内核的架构⼀般有这三种类型&#xff1a; ● 宏内核&#xff0c;包含多个模块&#xff0c;整个内核像⼀个完整的程序&#xff1b; ● 微内核&#xff0c;有⼀个最⼩版本的内核&#xff0…

linux的基础命令

文章目录 linux的基础命令一、linux的目录结构&#xff08;一&#xff09;Linux路径的描述方式 二、Linux命令入门&#xff08;一&#xff09;Linux命令基础格式 三、ls命令&#xff08;一&#xff09;HOME目录和工作目录&#xff08;二&#xff09;ls命令的参数1.ls命令的-a选…