保姆级 Keras 实现 YOLO v3 一

news2024/11/14 20:51:47

保姆级 Keras 实现 YOLO v3 一

  • 一. YOLO v3 总览
  • 二. 特征提取网络
    • 特征提取网络代码实现
  • 三. 特征融合
    • 特征融合代码实现
  • 四. 网络输出
    • 模型输出代码实现
  • 五. 网络模型代码实现
  • 六. 代码下载

如果要给 YOLO 目标检测算法一个评价的话, 就是快和准, 现在已经到了 v8, 但是我为什么还要写 v3 呢? 我觉得 v3 是一个节点, 承上启下的节点. 它有 v1 和 v2 的影子, 也为后面的其他版本奠定了基础. 对于教学或者学习 YOLO 是极好的

一. YOLO v3 总览

如果要给 YOLO v3 一个学习的策略的话, 我觉得从整体到局部比较合适, 我们把 YOLO v3 总结如下

v3 view
相比于祥细的结构图, 这样的三个框就把 YOLO v3 概括完了. 后面我们再将各个部分拆开祥细说明, 这就是从整体到局部的策略

二. 特征提取网络

这是最容易实现的部分, 因为不会涉及到坐标计算与损失函数之类的东西, 只需要按结构用代码实现即可, 下面是结构图, 括号里面的数字是各方块输出的 shape

dark_net

这个也不是祥细的结构图, 祥细的结构图还需要将各个方块展开, 前面的数字是 n 个这样的 Block 重复, 现在把 Conv Block 展开如下

conv_block

Residual Block 展开如下

residual block

特征图的尺寸是输入图像的 1 32 1 \over 32 321, 但是并没有用我们常见的 Pooling 来减小特征图尺寸, 而是使用步长为 2 的卷积层来实现的, 就是各个 Residual Block 之前的 Conv2D 层

Conv2D(kernel_size = (3, 3), strides = (2, 2), padding = "same")

特征提取网络代码实现

因为结构有重复性, 所以可以定义一个函数来重复调用

# 定义 cbl (Conv2D, BatchNormalization, LeakyReLU) 函数
def cbl(inputs, filters, kernel_size):
    x = keras.layers.Conv2D(filters = filters, kernel_size = kernel_size, strides = (1, 1),
                            padding = "valid" if (1, 1) == kernel_size else "same")(inputs)

    x = keras.layers.BatchNormalization()(x)
    x = keras.layers.LeakyReLU(alpha = 0.1)(x)
    
    return x

接下来定义 Residual Block

# 定义 residual_block 函数
# filters: 第一个 cbl 的卷积核数量, 第二个 cbl 卷积核数量自动乘 2
# repeats: 模块重复次数
def residual_block(inputs, filters, repeats):
    x = inputs
    for i in range(repeats):
        x = cbl(x, filters, kernel_size = (1, 1))
        x = cbl(x, filters * 2, kernel_size = (3, 3))
        x = keras.layers.Add()([inputs, x])
        
    return x

有了这两个函数, 就可以定义完整的特征提取网络 darknet

# 定义 darn_net 函数
def dark_net(inputs = None):
    x = cbl(inputs, filters = 32, kernel_size = (3, 3))
    x = keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x)
    
    x = residual_block(x, filters = 32, repeats = 1)
    x = keras.layers.Conv2D(filters = 128, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x)
    
    x = residual_block(x, filters = 64, repeats = 2)
    x = keras.layers.Conv2D(filters = 256, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x)
    
    # 52 × 52 特征图
    x_52 = residual_block(x, filters = 128, repeats = 8)
    x = keras.layers.Conv2D(filters = 512, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x_52)
    
    # 26 × 26 特征图
    x_26 = residual_block(x, filters = 256, repeats = 8)
    x = keras.layers.Conv2D(filters = 1024, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x_26)
    
    # 13 × 13 特征图
    x_13 = residual_block(x, filters = 512, repeats = 4)
    
    return x_13, x_26, x_52

这样就和前面的结构图对上了, 函数输出 x_13, x_26, x_52 三层, 后面特征融合的时候会用到

三. 特征融合

这个也没有什么大问题, 只需要将上面的 13 × 13 特征图上采样放大与 26 × 26 特征图在最后一个维度拼接, 26 × 26 特征图上采样放大与 52 × 52 特征图在最后一个维度拼接, 如下图

neck

特征融合代码实现

特征融合 Conv Block 部分也有很多重复的方块, 所以可以定义成一个函数方便调用

# 定义 cbl block 函数
# filters: 第一个 block 的卷积核数量, 其他会自动计算
def cbl_block(inputs, filters):
    x = cbl(inputs, filters, kernel_size = (1, 1))
    x = cbl(x, filters * 2, kernel_size = (3, 3))
    x = cbl(x, filters, kernel_size = (1, 1))
    x = cbl(x, filters * 2, kernel_size = (3, 3))
    x = cbl(x, filters, kernel_size = (1, 1))
    return x

总的特征融合函数如下

# 定义 neck 函数
def neck(inputs = None):
    x_13, x_26, x_52 = inputs
    
    feature = cbl_block(x_13, 512)
    feature = cbl(feature, filters = 256, kernel_size = (1, 1))
    feature = keras.layers.UpSampling2D(size = (2, 2), interpolation = "bilinear")(feature)
    feature = keras.layers.Concatenate(axis = -1)([feature, x_26])
    
    x_26 = cbl_block(feature, 256)
    
    feature = cbl(x_26, filters = 128, kernel_size = (1, 1))
    feature = keras.layers.UpSampling2D(size = (2, 2), interpolation = "bilinear")(feature)
    feature = keras.layers.Concatenate(axis = -1)([feature, x_52])
    
    x_52 = cbl_block(feature, 128)
    
    return x_13, x_26, x_52

四. 网络输出

这部分就更简单了, 将融合后的特征图做卷积, 变换到对应的通道数, 因为我要训练的数据集是 VOC2007, 所以输出通道数为 75 = (4 + 1 + 20) × 3. 模型结构如下

head

模型输出代码实现

输出函数如下, 输入是三个融合后的特征图

# 定义 head 函数
def head(inputs, filters):
    x_13, x_26, x_52 = inputs
    x_13 = cbl(x_13, 1024, kernel_size = (3, 3))
    x_13 = cbl(x_13, filters, kernel_size = (1, 1))
    
    x_26 = cbl(x_26, 512, kernel_size = (3, 3))
    x_26 = cbl(x_26, filters, kernel_size = (1, 1))
    
    x_52 = cbl(x_52, 256, kernel_size = (3, 3))
    x_52 = cbl(x_52, filters, kernel_size = (1, 1))
    
    return x_13, x_26, x_52

五. 网络模型代码实现

有了上面的相应的函数之后, 定义完整的模型就变得很简单了, 由 dark_net, neck, head 三部分构成

# 模型定义
image = keras.layers.Input(shape = (416, 416, 3), name = "input")

x_13, x_26, x_52 = dark_net(inputs = image)
x_13, x_26, x_52 = neck([x_13, x_26, x_52])
x_13, x_26, x_52 = head([x_13, x_26, x_52], filters = 75)

model = keras.Model(inputs = image,
                    outputs = [x_13, x_26, x_52],
                    name = "yolov3")
model.summary()
Model: "yolov3"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input (InputLayer)              [(None, 416, 416, 3) 0                                            
__________________________________________________________________________________________________
conv2d (Conv2D)                 (None, 416, 416, 32) 896         input[0][0]                      
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 416, 416, 32) 128         conv2d[0][0]                     
__________________________________________________________________________________________________
leaky_re_lu (LeakyReLU)         (None, 416, 416, 32) 0           batch_normalization[0][0]        
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 208, 208, 64) 18496       leaky_re_lu[0][0]                
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 208, 208, 32) 2080        conv2d_1[0][0]                   
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 208, 208, 32) 128         conv2d_2[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_1 (LeakyReLU)       (None, 208, 208, 32) 0           batch_normalization_1[0][0]      
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 208, 208, 64) 18496       leaky_re_lu_1[0][0]              
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 208, 208, 64) 256         conv2d_3[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_2 (LeakyReLU)       (None, 208, 208, 64) 0           batch_normalization_2[0][0]      
__________________________________________________________________________________________________
add (Add)                       (None, 208, 208, 64) 0           conv2d_1[0][0]                   
                                                                 leaky_re_lu_2[0][0]              
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 104, 104, 128 73856       add[0][0]                        
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 104, 104, 64) 8256        conv2d_4[0][0]                   
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 104, 104, 64) 256         conv2d_5[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_3 (LeakyReLU)       (None, 104, 104, 64) 0           batch_normalization_3[0][0]      
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 104, 104, 128 73856       leaky_re_lu_3[0][0]              
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 104, 104, 128 512         conv2d_6[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_4 (LeakyReLU)       (None, 104, 104, 128 0           batch_normalization_4[0][0]      
__________________________________________________________________________________________________
add_1 (Add)                     (None, 104, 104, 128 0           conv2d_4[0][0]                   
                                                                 leaky_re_lu_4[0][0]              
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 104, 104, 64) 8256        add_1[0][0]                      
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 104, 104, 64) 256         conv2d_7[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_5 (LeakyReLU)       (None, 104, 104, 64) 0           batch_normalization_5[0][0]      
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 104, 104, 128 73856       leaky_re_lu_5[0][0]              
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 104, 104, 128 512         conv2d_8[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_6 (LeakyReLU)       (None, 104, 104, 128 0           batch_normalization_6[0][0]      
__________________________________________________________________________________________________
add_2 (Add)                     (None, 104, 104, 128 0           conv2d_4[0][0]                   
                                                                 leaky_re_lu_6[0][0]              
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 52, 52, 256)  295168      add_2[0][0]                      
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 52, 52, 128)  32896       conv2d_9[0][0]                   
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 52, 52, 128)  512         conv2d_10[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_7 (LeakyReLU)       (None, 52, 52, 128)  0           batch_normalization_7[0][0]      
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_7[0][0]              
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 52, 52, 256)  1024        conv2d_11[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_8 (LeakyReLU)       (None, 52, 52, 256)  0           batch_normalization_8[0][0]      
__________________________________________________________________________________________________
add_3 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   
                                                                 leaky_re_lu_8[0][0]              
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 52, 52, 128)  32896       add_3[0][0]                      
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 52, 52, 128)  512         conv2d_12[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_9 (LeakyReLU)       (None, 52, 52, 128)  0           batch_normalization_9[0][0]      
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_9[0][0]              
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 52, 52, 256)  1024        conv2d_13[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_10 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_10[0][0]     
__________________________________________________________________________________________________
add_4 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   
                                                                 leaky_re_lu_10[0][0]             
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 52, 52, 128)  32896       add_4[0][0]                      
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 52, 52, 128)  512         conv2d_14[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_11 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_11[0][0]     
__________________________________________________________________________________________________
conv2d_15 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_11[0][0]             
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 52, 52, 256)  1024        conv2d_15[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_12 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_12[0][0]     
__________________________________________________________________________________________________
add_5 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   
                                                                 leaky_re_lu_12[0][0]             
__________________________________________________________________________________________________
conv2d_16 (Conv2D)              (None, 52, 52, 128)  32896       add_5[0][0]                      
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 52, 52, 128)  512         conv2d_16[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_13 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_13[0][0]     
__________________________________________________________________________________________________
conv2d_17 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_13[0][0]             
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 52, 52, 256)  1024        conv2d_17[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_14 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_14[0][0]     
__________________________________________________________________________________________________
add_6 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   
                                                                 leaky_re_lu_14[0][0]             
__________________________________________________________________________________________________
conv2d_18 (Conv2D)              (None, 52, 52, 128)  32896       add_6[0][0]                      
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 52, 52, 128)  512         conv2d_18[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_15 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_15[0][0]     
__________________________________________________________________________________________________
conv2d_19 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_15[0][0]             
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 52, 52, 256)  1024        conv2d_19[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_16 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_16[0][0]     
__________________________________________________________________________________________________
add_7 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   
                                                                 leaky_re_lu_16[0][0]             
__________________________________________________________________________________________________
conv2d_20 (Conv2D)              (None, 52, 52, 128)  32896       add_7[0][0]                      
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 52, 52, 128)  512         conv2d_20[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_17 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_17[0][0]     
__________________________________________________________________________________________________
conv2d_21 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_17[0][0]             
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 52, 52, 256)  1024        conv2d_21[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_18 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_18[0][0]     
__________________________________________________________________________________________________
add_8 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   
                                                                 leaky_re_lu_18[0][0]             
__________________________________________________________________________________________________
conv2d_22 (Conv2D)              (None, 52, 52, 128)  32896       add_8[0][0]                      
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 52, 52, 128)  512         conv2d_22[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_19 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_19[0][0]     
__________________________________________________________________________________________________
conv2d_23 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_19[0][0]             
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 52, 52, 256)  1024        conv2d_23[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_20 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_20[0][0]     
__________________________________________________________________________________________________
add_9 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   
                                                                 leaky_re_lu_20[0][0]             
__________________________________________________________________________________________________
conv2d_24 (Conv2D)              (None, 52, 52, 128)  32896       add_9[0][0]                      
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 52, 52, 128)  512         conv2d_24[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_21 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_21[0][0]     
__________________________________________________________________________________________________
conv2d_25 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_21[0][0]             
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 52, 52, 256)  1024        conv2d_25[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_22 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_22[0][0]     
__________________________________________________________________________________________________
add_10 (Add)                    (None, 52, 52, 256)  0           conv2d_9[0][0]                   
                                                                 leaky_re_lu_22[0][0]             
__________________________________________________________________________________________________
conv2d_26 (Conv2D)              (None, 26, 26, 512)  1180160     add_10[0][0]                     
__________________________________________________________________________________________________
conv2d_27 (Conv2D)              (None, 26, 26, 256)  131328      conv2d_26[0][0]                  
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 26, 26, 256)  1024        conv2d_27[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_23 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_23[0][0]     
__________________________________________________________________________________________________
conv2d_28 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_23[0][0]             
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 26, 26, 512)  2048        conv2d_28[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_24 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_24[0][0]     
__________________________________________________________________________________________________
add_11 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  
                                                                 leaky_re_lu_24[0][0]             
__________________________________________________________________________________________________
conv2d_29 (Conv2D)              (None, 26, 26, 256)  131328      add_11[0][0]                     
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 26, 26, 256)  1024        conv2d_29[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_25 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_25[0][0]     
__________________________________________________________________________________________________
conv2d_30 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_25[0][0]             
__________________________________________________________________________________________________
batch_normalization_26 (BatchNo (None, 26, 26, 512)  2048        conv2d_30[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_26 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_26[0][0]     
__________________________________________________________________________________________________
add_12 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  
                                                                 leaky_re_lu_26[0][0]             
__________________________________________________________________________________________________
conv2d_31 (Conv2D)              (None, 26, 26, 256)  131328      add_12[0][0]                     
__________________________________________________________________________________________________
batch_normalization_27 (BatchNo (None, 26, 26, 256)  1024        conv2d_31[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_27 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_27[0][0]     
__________________________________________________________________________________________________
conv2d_32 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_27[0][0]             
__________________________________________________________________________________________________
batch_normalization_28 (BatchNo (None, 26, 26, 512)  2048        conv2d_32[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_28 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_28[0][0]     
__________________________________________________________________________________________________
add_13 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  
                                                                 leaky_re_lu_28[0][0]             
__________________________________________________________________________________________________
conv2d_33 (Conv2D)              (None, 26, 26, 256)  131328      add_13[0][0]                     
__________________________________________________________________________________________________
batch_normalization_29 (BatchNo (None, 26, 26, 256)  1024        conv2d_33[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_29 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_29[0][0]     
__________________________________________________________________________________________________
conv2d_34 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_29[0][0]             
__________________________________________________________________________________________________
batch_normalization_30 (BatchNo (None, 26, 26, 512)  2048        conv2d_34[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_30 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_30[0][0]     
__________________________________________________________________________________________________
add_14 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  
                                                                 leaky_re_lu_30[0][0]             
__________________________________________________________________________________________________
conv2d_35 (Conv2D)              (None, 26, 26, 256)  131328      add_14[0][0]                     
__________________________________________________________________________________________________
batch_normalization_31 (BatchNo (None, 26, 26, 256)  1024        conv2d_35[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_31 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_31[0][0]     
__________________________________________________________________________________________________
conv2d_36 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_31[0][0]             
__________________________________________________________________________________________________
batch_normalization_32 (BatchNo (None, 26, 26, 512)  2048        conv2d_36[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_32 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_32[0][0]     
__________________________________________________________________________________________________
add_15 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  
                                                                 leaky_re_lu_32[0][0]             
__________________________________________________________________________________________________
conv2d_37 (Conv2D)              (None, 26, 26, 256)  131328      add_15[0][0]                     
__________________________________________________________________________________________________
batch_normalization_33 (BatchNo (None, 26, 26, 256)  1024        conv2d_37[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_33 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_33[0][0]     
__________________________________________________________________________________________________
conv2d_38 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_33[0][0]             
__________________________________________________________________________________________________
batch_normalization_34 (BatchNo (None, 26, 26, 512)  2048        conv2d_38[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_34 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_34[0][0]     
__________________________________________________________________________________________________
add_16 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  
                                                                 leaky_re_lu_34[0][0]             
__________________________________________________________________________________________________
conv2d_39 (Conv2D)              (None, 26, 26, 256)  131328      add_16[0][0]                     
__________________________________________________________________________________________________
batch_normalization_35 (BatchNo (None, 26, 26, 256)  1024        conv2d_39[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_35 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_35[0][0]     
__________________________________________________________________________________________________
conv2d_40 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_35[0][0]             
__________________________________________________________________________________________________
batch_normalization_36 (BatchNo (None, 26, 26, 512)  2048        conv2d_40[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_36 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_36[0][0]     
__________________________________________________________________________________________________
add_17 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  
                                                                 leaky_re_lu_36[0][0]             
__________________________________________________________________________________________________
conv2d_41 (Conv2D)              (None, 26, 26, 256)  131328      add_17[0][0]                     
__________________________________________________________________________________________________
batch_normalization_37 (BatchNo (None, 26, 26, 256)  1024        conv2d_41[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_37 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_37[0][0]     
__________________________________________________________________________________________________
conv2d_42 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_37[0][0]             
__________________________________________________________________________________________________
batch_normalization_38 (BatchNo (None, 26, 26, 512)  2048        conv2d_42[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_38 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_38[0][0]     
__________________________________________________________________________________________________
add_18 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  
                                                                 leaky_re_lu_38[0][0]             
__________________________________________________________________________________________________
conv2d_43 (Conv2D)              (None, 13, 13, 1024) 4719616     add_18[0][0]                     
__________________________________________________________________________________________________
conv2d_44 (Conv2D)              (None, 13, 13, 512)  524800      conv2d_43[0][0]                  
__________________________________________________________________________________________________
batch_normalization_39 (BatchNo (None, 13, 13, 512)  2048        conv2d_44[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_39 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_39[0][0]     
__________________________________________________________________________________________________
conv2d_45 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_39[0][0]             
__________________________________________________________________________________________________
batch_normalization_40 (BatchNo (None, 13, 13, 1024) 4096        conv2d_45[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_40 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_40[0][0]     
__________________________________________________________________________________________________
add_19 (Add)                    (None, 13, 13, 1024) 0           conv2d_43[0][0]                  
                                                                 leaky_re_lu_40[0][0]             
__________________________________________________________________________________________________
conv2d_46 (Conv2D)              (None, 13, 13, 512)  524800      add_19[0][0]                     
__________________________________________________________________________________________________
batch_normalization_41 (BatchNo (None, 13, 13, 512)  2048        conv2d_46[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_41 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_41[0][0]     
__________________________________________________________________________________________________
conv2d_47 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_41[0][0]             
__________________________________________________________________________________________________
batch_normalization_42 (BatchNo (None, 13, 13, 1024) 4096        conv2d_47[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_42 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_42[0][0]     
__________________________________________________________________________________________________
add_20 (Add)                    (None, 13, 13, 1024) 0           conv2d_43[0][0]                  
                                                                 leaky_re_lu_42[0][0]             
__________________________________________________________________________________________________
conv2d_48 (Conv2D)              (None, 13, 13, 512)  524800      add_20[0][0]                     
__________________________________________________________________________________________________
batch_normalization_43 (BatchNo (None, 13, 13, 512)  2048        conv2d_48[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_43 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_43[0][0]     
__________________________________________________________________________________________________
conv2d_49 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_43[0][0]             
__________________________________________________________________________________________________
batch_normalization_44 (BatchNo (None, 13, 13, 1024) 4096        conv2d_49[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_44 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_44[0][0]     
__________________________________________________________________________________________________
add_21 (Add)                    (None, 13, 13, 1024) 0           conv2d_43[0][0]                  
                                                                 leaky_re_lu_44[0][0]             
__________________________________________________________________________________________________
conv2d_50 (Conv2D)              (None, 13, 13, 512)  524800      add_21[0][0]                     
__________________________________________________________________________________________________
batch_normalization_45 (BatchNo (None, 13, 13, 512)  2048        conv2d_50[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_45 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_45[0][0]     
__________________________________________________________________________________________________
conv2d_51 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_45[0][0]             
__________________________________________________________________________________________________
batch_normalization_46 (BatchNo (None, 13, 13, 1024) 4096        conv2d_51[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_46 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_46[0][0]     
__________________________________________________________________________________________________
add_22 (Add)                    (None, 13, 13, 1024) 0           conv2d_43[0][0]                  
                                                                 leaky_re_lu_46[0][0]             
__________________________________________________________________________________________________
conv2d_52 (Conv2D)              (None, 13, 13, 512)  524800      add_22[0][0]                     
__________________________________________________________________________________________________
batch_normalization_47 (BatchNo (None, 13, 13, 512)  2048        conv2d_52[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_47 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_47[0][0]     
__________________________________________________________________________________________________
conv2d_53 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_47[0][0]             
__________________________________________________________________________________________________
batch_normalization_48 (BatchNo (None, 13, 13, 1024) 4096        conv2d_53[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_48 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_48[0][0]     
__________________________________________________________________________________________________
conv2d_54 (Conv2D)              (None, 13, 13, 512)  524800      leaky_re_lu_48[0][0]             
__________________________________________________________________________________________________
batch_normalization_49 (BatchNo (None, 13, 13, 512)  2048        conv2d_54[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_49 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_49[0][0]     
__________________________________________________________________________________________________
conv2d_55 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_49[0][0]             
__________________________________________________________________________________________________
batch_normalization_50 (BatchNo (None, 13, 13, 1024) 4096        conv2d_55[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_50 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_50[0][0]     
__________________________________________________________________________________________________
conv2d_56 (Conv2D)              (None, 13, 13, 512)  524800      leaky_re_lu_50[0][0]             
__________________________________________________________________________________________________
batch_normalization_51 (BatchNo (None, 13, 13, 512)  2048        conv2d_56[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_51 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_51[0][0]     
__________________________________________________________________________________________________
conv2d_57 (Conv2D)              (None, 13, 13, 256)  131328      leaky_re_lu_51[0][0]             
__________________________________________________________________________________________________
batch_normalization_52 (BatchNo (None, 13, 13, 256)  1024        conv2d_57[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_52 (LeakyReLU)      (None, 13, 13, 256)  0           batch_normalization_52[0][0]     
__________________________________________________________________________________________________
up_sampling2d (UpSampling2D)    (None, 26, 26, 256)  0           leaky_re_lu_52[0][0]             
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 26, 26, 768)  0           up_sampling2d[0][0]              
                                                                 add_18[0][0]                     
__________________________________________________________________________________________________
conv2d_58 (Conv2D)              (None, 26, 26, 256)  196864      concatenate[0][0]                
__________________________________________________________________________________________________
batch_normalization_53 (BatchNo (None, 26, 26, 256)  1024        conv2d_58[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_53 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_53[0][0]     
__________________________________________________________________________________________________
conv2d_59 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_53[0][0]             
__________________________________________________________________________________________________
batch_normalization_54 (BatchNo (None, 26, 26, 512)  2048        conv2d_59[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_54 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_54[0][0]     
__________________________________________________________________________________________________
conv2d_60 (Conv2D)              (None, 26, 26, 256)  131328      leaky_re_lu_54[0][0]             
__________________________________________________________________________________________________
batch_normalization_55 (BatchNo (None, 26, 26, 256)  1024        conv2d_60[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_55 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_55[0][0]     
__________________________________________________________________________________________________
conv2d_61 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_55[0][0]             
__________________________________________________________________________________________________
batch_normalization_56 (BatchNo (None, 26, 26, 512)  2048        conv2d_61[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_56 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_56[0][0]     
__________________________________________________________________________________________________
conv2d_62 (Conv2D)              (None, 26, 26, 256)  131328      leaky_re_lu_56[0][0]             
__________________________________________________________________________________________________
batch_normalization_57 (BatchNo (None, 26, 26, 256)  1024        conv2d_62[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_57 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_57[0][0]     
__________________________________________________________________________________________________
conv2d_63 (Conv2D)              (None, 26, 26, 128)  32896       leaky_re_lu_57[0][0]             
__________________________________________________________________________________________________
batch_normalization_58 (BatchNo (None, 26, 26, 128)  512         conv2d_63[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_58 (LeakyReLU)      (None, 26, 26, 128)  0           batch_normalization_58[0][0]     
__________________________________________________________________________________________________
up_sampling2d_1 (UpSampling2D)  (None, 52, 52, 128)  0           leaky_re_lu_58[0][0]             
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 52, 52, 384)  0           up_sampling2d_1[0][0]            
                                                                 add_10[0][0]                     
__________________________________________________________________________________________________
conv2d_64 (Conv2D)              (None, 52, 52, 128)  49280       concatenate_1[0][0]              
__________________________________________________________________________________________________
batch_normalization_59 (BatchNo (None, 52, 52, 128)  512         conv2d_64[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_59 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_59[0][0]     
__________________________________________________________________________________________________
conv2d_65 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_59[0][0]             
__________________________________________________________________________________________________
batch_normalization_60 (BatchNo (None, 52, 52, 256)  1024        conv2d_65[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_60 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_60[0][0]     
__________________________________________________________________________________________________
conv2d_66 (Conv2D)              (None, 52, 52, 128)  32896       leaky_re_lu_60[0][0]             
__________________________________________________________________________________________________
batch_normalization_61 (BatchNo (None, 52, 52, 128)  512         conv2d_66[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_61 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_61[0][0]     
__________________________________________________________________________________________________
conv2d_67 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_61[0][0]             
__________________________________________________________________________________________________
batch_normalization_62 (BatchNo (None, 52, 52, 256)  1024        conv2d_67[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_62 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_62[0][0]     
__________________________________________________________________________________________________
conv2d_68 (Conv2D)              (None, 52, 52, 128)  32896       leaky_re_lu_62[0][0]             
__________________________________________________________________________________________________
batch_normalization_63 (BatchNo (None, 52, 52, 128)  512         conv2d_68[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_63 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_63[0][0]     
__________________________________________________________________________________________________
conv2d_69 (Conv2D)              (None, 13, 13, 1024) 9438208     add_22[0][0]                     
__________________________________________________________________________________________________
conv2d_71 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_57[0][0]             
__________________________________________________________________________________________________
conv2d_73 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_63[0][0]             
__________________________________________________________________________________________________
batch_normalization_64 (BatchNo (None, 13, 13, 1024) 4096        conv2d_69[0][0]                  
__________________________________________________________________________________________________
batch_normalization_66 (BatchNo (None, 26, 26, 512)  2048        conv2d_71[0][0]                  
__________________________________________________________________________________________________
batch_normalization_68 (BatchNo (None, 52, 52, 256)  1024        conv2d_73[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_64 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_64[0][0]     
__________________________________________________________________________________________________
leaky_re_lu_66 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_66[0][0]     
__________________________________________________________________________________________________
leaky_re_lu_68 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_68[0][0]     
__________________________________________________________________________________________________
conv2d_70 (Conv2D)              (None, 13, 13, 75)   76875       leaky_re_lu_64[0][0]             
__________________________________________________________________________________________________
conv2d_72 (Conv2D)              (None, 26, 26, 75)   38475       leaky_re_lu_66[0][0]             
__________________________________________________________________________________________________
conv2d_74 (Conv2D)              (None, 52, 52, 75)   19275       leaky_re_lu_68[0][0]             
__________________________________________________________________________________________________
batch_normalization_65 (BatchNo (None, 13, 13, 75)   300         conv2d_70[0][0]                  
__________________________________________________________________________________________________
batch_normalization_67 (BatchNo (None, 26, 26, 75)   300         conv2d_72[0][0]                  
__________________________________________________________________________________________________
batch_normalization_69 (BatchNo (None, 52, 52, 75)   300         conv2d_74[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_65 (LeakyReLU)      (None, 13, 13, 75)   0           batch_normalization_65[0][0]     
__________________________________________________________________________________________________
leaky_re_lu_67 (LeakyReLU)      (None, 26, 26, 75)   0           batch_normalization_67[0][0]     
__________________________________________________________________________________________________
leaky_re_lu_69 (LeakyReLU)      (None, 52, 52, 75)   0           batch_normalization_69[0][0]     
==================================================================================================
Total params: 66,416,517
Trainable params: 66,367,427
Non-trainable params: 49,090
__________________________________________________________________________________________________

加上输入层一共 243 层

六. 代码下载

示例代码可下载 Jupyter Notebook 示例代码

下一篇: 保姆级 Keras 实现 YOLO v3 二

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1244267.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端环境变量释义process.env与import.meta.env

视频教程 彻底搞懂前端环境变量使用和原理,超清楚_哔哩哔哩_bilibili 添加命令行参数 --modexxxxx 新建.env.xxxx文件,其中.env文件会在所有环境下生效 以VITE_开头,字符串无需加双引号 使用import.meta.env.VITE_xxxxx进行调用

JavaScript基础—引入方式、注释和结束符、输入和输出、变量、常量、数据类型、检测数据类型、类型转换、综合案例—用户订单信息

版本说明 当前版本号[20231123]。 版本修改说明20231123初版 目录 文章目录 版本说明目录JavaScript 基础 - 第1天介绍引入方式内部方式外部形式 注释和结束符单行注释多行注释 结束符输入和输出输出输入 变量声明赋值变量初始化更新变量 关键字变量名命名规则 常量数据类型…

2023年11个最佳免费WordPress主题

如果您刚刚开始使用 WordPress,您可能会很自然地认为,只要免费的WordPress主题看起来像您想要的网站主题,那么它就很合适。不幸的是,事情并没有那么简单。这就是为什么在今天的文章中,我们概述了一份可靠的标准清单&am…

投资房产的理由与好处,投资买房的方法与技巧

一、教程描述 本套买房教程,大小2.15G,共有23个文件。 二、教程目录 00.她23岁北漂月薪600,7年后50万在京买了第一套房,如今身价上千万.mpg 01.这个游戏,有些人输了所有钱,一辈子也不明白这个道理.mpg …

脉冲幅度调制信号的功率谱计算

本篇文章是博主在通信等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对人工智能等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在通信领域笔记&#xf…

Hibernate批量处理数据

概念: 批量处理数据是指在一个事务场景中处理大量数据。 在应用程序中难以避免进行批量操作,Hibernate提供了以下方式进行批量处理数据: (1)使用HQL进行批量操作 数据库层面 executeUpdate() (2)使用JDBC API进行批量操作 数据库层面 …

P6 C++控制流语句(continue, break, return)

前言 今天我们讲的是控制流语句,本期内容是上期课程的延续。 控制流语句一般与循环语句一起工作,它们让我们可以更好的控制这些循环的实际运行。 我们有三个主要的控制流语句可以使用,continue 、break 和 return,它们有不同的…

Nginx模块开发之http handler实现流量统计(1)

文章目录 一、handler简介二、Nginx handler模块开发2.1、示例代码2.2、编写config文件2.3、编译模块到Nginx源码中2.4、修改conf文件2.5、执行效果 三、Nginx的热更新总结 一、handler简介 Handler模块就是接受来自客户端的请求并产生输出的模块。 配置文件中使用location指令…

UML建模图文详解教程06——顺序图

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl本文参考资料:《UML面向对象分析、建模与设计(第2版)》吕云翔,赵天宇 著 顺序图概述 顺序图(sequence diagram,也…

docker安装以及idea访问docker

其他目录: docker 安装环境(有空更新) url “” docker 打包java包,并运行(有空更新) url “” docker 打包vue (有空更新) url “” docker 多服务 (有空更新&#xff…

扩展外部eMMC存储

By Toradex胡珊逢 简介 存储器的嵌入式设备中扮演着重要角色,上面不仅安装有操作系统,同时也保存着应用程序和运行日志等。对于存储器如 eMMC,写入的数据量决定其使用寿命,对于有大量日志记录的应用,通常可以选用一个…

【Unity】接入MAX聚合广告SDK Applovin + GoogleAdmob

版本: Unity:2019.4.35f1gradle plugin: 4.2.0 (实际要7.0 对应build_tools:34.0.0) gradle: 6.7.1 (实际要7.0 对应build_tools:34.0.0) jdk: 1.8.0_241build_tools: 34.0.0 ndk: android-ndk-r19 文档: 6.0.1(Andro…

windows根据已有的安卓签名文件获取MD5签名

windows根据已有的安卓签名文件获取MD5签名 0 现状 uniapp 本机号码一键登录需要MD5的,现有的签名文件但是只有SHA1和SHA256 查看SHA1和SHA256 keytool -list -v -keystore [你的.keystore文件]1 前提 已有生成签名文件的环境 搭建Openssl环境,设置…

基于Springboot+Vue选课系统

选课系统要求 (1)数据库表:教师信息表、学生信息表、课程表、选课表 其中,教师信息表、学生信息表和选课表的数据需要提前设置,本题主要操作课程表 (2) 技术架构: 后台使用springboot 前端使用vue-admin-template (3) 考试时间&…

西米支付:如何设计和构建游戏支付系统?

如何设计和构建游戏支付系统? 目前,游戏开发中最常见的支付方式包括微信支付、支付宝支付和苹果支付等。今天,我将与大家分享游戏支付系统的架构和设计。 游戏支付的主要业务流程是指游戏玩家在游戏中购买虚拟物品或服务所进行的支付过程。一…

鸿蒙 ark ui 轮播图实现教程

前言: 各位同学有段时间没有见面 因为一直很忙所以就没有去更新博客。最近有在学习这个鸿蒙的ark ui开发 因为鸿蒙不是发布了一个鸿蒙next的测试版本 明年会启动纯血鸿蒙应用 所以我就想提前给大家写一些博客文章 效果图 具体实现 我们在鸿蒙的ark ui 里面列表使…

【jvm】虚拟机之堆

目录 一、堆的核心概述二、堆的内存细分(按分代收集理论设计)2.1 java7及以前2.2 java8及以后 三、堆内存大小3.1 说明3.2 参数设置3.3 默认大小3.4 手动设置3.5 jps3.6 jstat3.7 OutOfMemory举例 四、年轻代与老年代4.1 说明 五、对象分配过程5.1 说明5…

开源Flutter on Desktop项目-极扩安卓开发者工具

极扩-安卓开发者工具 他能干嘛 这个Flutter on Desktop桌面项目可以辅助你开发APP,支持分析一些运行数据以及操作APK安装等功能,甚至我还加入了Window安卓子系统的功能。 在它的帮助下,你可以快速查看当前正在运行的Activity,给你…

OpenCV实现图像噪声、去噪基本方法

一、噪声分类 1、高斯噪声 指服从高斯分布(正态分布)的一类噪声,其产生的主要原因是由于相机在拍摄时视场较暗且亮度不均匀造成的,同时相机长时间工作使得温度过高也会引起高斯噪声,另外电路元器件白身噪声和互相影响…

简单聊聊加密和加签的关系与区别

大家好,我是G探险者。 平时我们在项目上一定都听过加密和加签,加密可能都好理解,知道它是保障的数据的机密性,那加签是为了保障啥勒?它和加密有啥区别? 带着这个疑问,我们就来聊聊二者的区别。…