DRAM(Distilling and Refining Annotations of Metabolism,提取和精练代谢注释)工具安装和使用

news2024/11/16 3:43:19

先看文章介绍吧:DRAM for distilling microbial metabolism to automate the curation of microbiome function | Nucleic Acids Research | Oxford Academic (oup.com)

 

 

1、安装

默认使用conda安装吧,也建议使用conda,pip安装其实都差不多,但容易破坏当前环境。

###下载环境依赖列表
wget https://raw.githubusercontent.com/shafferm/DRAM/master/environment.yaml

###使用环境依赖文件创建DRAM的conda环境
conda env create -f environment.yaml -n DRAM

###激活DRAM环境
conda activate DRAM
#有的环境可能还是source
source activate DRAM

附gitub仓库安装说明地址,如果打不开的就直接使用上面的命令安装吧: 

2. How to Install and Set Up DRAM · WrightonLabCSU/DRAM Wiki (github.com) 

2、配置数据库

先查看DRAM的配置情况:

###激活DRAM环境后,使用print_config命令查看当前数据库配置
DRAM-setup.py print_config
##很显然,这里数据库都还没有配置好,报错了。
2023-11-23 16:00:45,883 - Logging to console
/anaconda3/envs/DRAM/lib/python3.10/site-packages/mag_annotator/database_handler.py:123: UserWarning: Database does not exist at path None
  warnings.warn("Database does not exist at path %s" % description_loc)
Processed search databases
KEGG db: None
KOfam db: None
KOfam KO list: None
UniRef db: None
Pfam db: None
dbCAN db: None
RefSeq Viral db: None
MEROPS peptidase db: None
VOGDB db: None

Descriptions of search database entries
Pfam hmm dat: None
dbCAN family activities: None
VOG annotations: None

Description db: None

DRAM distillation sheets
Genome summary form: None
Module step form: None
ETC module database: None
Function heatmap form: None
AMG database: None

喜欢开发的建议看一下这个文件:/envs/DRAM/lib/python3.10/site-packages/mag_annotator/database_handler.py

 万能的帮助信息:

###help查看DRAM配置命令
DRAM-setup.py --help

usage: DRAM-setup.py [-h]
                     {version,prepare_databases,set_database_locations,mv_db_folder,update_description_db,update_dram_forms,print_config,print_settings,import_config,export_config}
                     ...

positional arguments:
  {version,prepare_databases,set_database_locations,mv_db_folder,update_description_db,update_dram_forms,print_config,print_settings,import_config,export_config}
    version             print DRAM version
    prepare_databases   Download and process databases for annotation
    set_database_locations
                        Set database locations for already processed databases
    mv_db_folder        If you move a databases folder this will update all locations for all databases moved
    update_description_db
                        Update description database
    update_dram_forms   Update DRAM distillate and liquor forms
    print_config        Print database locations
    print_settings      Print database settings
    import_config       Import CONFIG file
    export_config       Export CONFIG file

options:
  -h, --help            show this help message and exit

全新配置数据库:

###DRAM数据库设置,官网上写的是自己有kegg权限时的命令,估计大家更合适第二种
DRAM-setup.py prepare_databases --output_dir DRAM_data --kegg_loc kegg.pep

#估计大家都没有kegg权限吧,github上写的是没有kegg权限时使用这个命令,
#这个如果使用已经有的数据库目录则需要再DRAM_data所在目录运行。
DRAM-setup.py prepare_databases --output_dir DRAM_data

#或者直接将这里的DRAM_data写成已有DRAM_data目录所在的绝对路径,当然最终的DRAM_data目录名也可以根据自己实际修改:
DRAM-setup.py prepare_databases --output_dir /mnt/dramdata/DRAM_data

########注意,这里不管使用有权限还是无权限的命令,都会在当前运行目录下生成一个DRAM_data的目录
###该DRAM_data目录下会有database_files文件夹和database_processing.log, 看字面意思就知道了吧
###一个是放kofam之类数据库的文件夹,一个是数据库处理的日志信息

###查看数据处理日志database_processing.log
cat database_processing.log 
2023-11-22 17:04:00,338 - Starting the process of downloading data
2023-11-22 17:04:00,339 - The gene_ko_link_loc argument was not used to specify a downloaded gene_ko_link file, and dram can not download it its self. So it is assumed that the user wants to set up DRAM without it
2023-11-22 17:04:00,339 - Database preparation started
2023-11-22 17:04:00,339 - Downloading kofam_hmm
2023-11-22 17:08:16,043 - Downloading kofam_ko_list
2023-11-22 17:08:18,051 - Downloading uniref

##########################################
#这个uniref有41G,而且下载速度一般只有几百kb,所以大家得耐心等一下,
#或者提前下载这个文件到自己想要存放的文件夹下,同样可以先下载kofam_hmm和kofam_ko_list这两个文件,
#不过这两个文件下载速度都还可以,直接使用数据库设置命令就行了。
wget -c ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/uniref90.fasta.gz

#但要注意的是运行数据库设置命令要在DRAM_data这个目录所在的目录下运行,如果已经进入到DRAM_data目录,
#则要 cd .. 回到上级目录,否则会自动在这个DRAM_data目录下再生成一个DRAM_data目录,原先下载的文件就看不到了。
#当然要避免这个问题需要想前面设置数据库命令中使用绝对路径。
DRAM-setup.py prepare_databases --output_dir /mnt/dramdata/DRAM_data


 导入导出原有数据库配置

###激活已有环境导出数据库配置
DRAM-setup.py export_config > my_config.json

###在激活的新环境下导入数据库配置
DRAM-setup.py import_config --config_loc  my_config.json

官方的提示:NOTE: Setting up DRAM can take a long time (up to 5 hours) and uses a large about of memory (512 gb) by default. To use less memory you can use the --skip_uniref flag which will reduce memory usage to ~64 gb if you do not provide KEGG Genes and 128 gb if you do. Depending on the number of processors which you tell it to use (using the --threads argument) and the speed of your internet connection. On a less than 5 year old server with 10 processors it takes about 2 hours to process the data when databases do not need to be downloaded.

看到没? uniref消耗内存惊人!即使跳过uniref耗内存也要64gb和128gb,而且时间超级长,即使不需要下载数据库文件,也要10线程运行2个小时左右,有胖服务器的人来干吧,后面我再提供一下做好的数据库链接供大家下载。 

直接设置已有数据库路径:

#设置示例:


###以下是设置数据库路径的全部参数:
usage: DRAM-setup.py set_database_locations [-h] [--kegg_db_loc KEGG_DB_LOC]
                                            [--kofam_hmm_loc KOFAM_HMM_LOC]
                                            [--kofam_ko_list_loc KOFAM_KO_LIST_LOC]
                                            [--uniref_db_loc UNIREF_DB_LOC]
                                            [--pfam_db_loc PFAM_DB_LOC]
                                            [--pfam_hmm_dat PFAM_HMM_DAT]
                                            [--dbcan_db_loc DBCAN_DB_LOC]
                                            [--dbcan_fam_activities DBCAN_FAM_ACTIVITIES]
                                            [--vogdb_db_loc VOGDB_DB_LOC]
                                            [--vog_annotations VOG_ANNOTATIONS]
                                            [--viral_db_loc VIRAL_DB_LOC]
                                            [--peptidase_db_loc PEPTIDASE_DB_LOC]
                                            [--description_db_loc DESCRIPTION_DB_LOC]
                                            [--genome_summary_form_loc GENOME_SUMMARY_FORM_LOC]
                                            [--module_step_form_loc MODULE_STEP_FORM_LOC]
                                            [--etc_module_database_loc ETC_MODULE_DATABASE_LOC]
                                            [--function_heatmap_form_loc FUNCTION_HEATMAP_FORM_LOC]
                                            [--amg_database_loc AMG_DATABASE_LOC]
                                            [--update_description_db]

optional arguments:
  -h, --help            show this help message and exit
  --kegg_db_loc KEGG_DB_LOC
                        mmseqs2 database file from kegg .pep file (default:
                        None)
  --kofam_hmm_loc KOFAM_HMM_LOC
                        hmm file for KOfam, already processed with hmmpress
                        (default: None)
  --kofam_ko_list_loc KOFAM_KO_LIST_LOC
                        KOfam ko list file (default: None)
  --uniref_db_loc UNIREF_DB_LOC
                        mmseqs2 database file from uniref .faa (default: None)
  --pfam_db_loc PFAM_DB_LOC
                        mmseqs2 database file from pfam .hmm (default: None)
  --pfam_hmm_dat PFAM_HMM_DAT
                        pfam hmm .dat file to get PF descriptions (default:
                        None)
  --dbcan_db_loc DBCAN_DB_LOC
                        hmm file for dbcan, already processed with hmmpress
                        (default: None)
  --dbcan_fam_activities DBCAN_FAM_ACTIVITIES
                        CAZY family activities file (default: None)
  --vogdb_db_loc VOGDB_DB_LOC
                        hmm file for vogdb, already processed with hmmpress
                        (default: None)
  --vog_annotations VOG_ANNOTATIONS
                        vog annotations file (default: None)
  --viral_db_loc VIRAL_DB_LOC
                        mmseqs2 database file from ref seq viral gene
                        collection (default: None)
  --peptidase_db_loc PEPTIDASE_DB_LOC
                        mmseqs2 database file from MEROPS database (default:
                        None)
  --description_db_loc DESCRIPTION_DB_LOC
                        Location to write description sqlite db (default:
                        None)
  --genome_summary_form_loc GENOME_SUMMARY_FORM_LOC
                        File path to genome summary form (default: None)
  --module_step_form_loc MODULE_STEP_FORM_LOC
                        File path to module step form (default: None)
  --etc_module_database_loc ETC_MODULE_DATABASE_LOC
                        File path to etc module database (default: None)
  --function_heatmap_form_loc FUNCTION_HEATMAP_FORM_LOC
                        File path to function heatmap form (default: None)
  --amg_database_loc AMG_DATABASE_LOC
                        File path to amg database (default: None)
  --update_description_db

额外数据库配置

除了kegg和uniref数据库外还可以使用额外数据库如甲基化数据库,不过官方说了需要1.4已上版本来使用这个功能:

#下载数据库文件
wget https://raw.githubusercontent.com/WrightonLabCSU/DRAM/master/data/methylotrophy/methylotrophy.faa
#将数据库注释
DRAM.py annotate -i '/some/path/*.fasta' -o dram_output --threads 30 --custom_db_name methyl --custom_fasta_loc methylotrophy.faa

#To Distill with methyl
wget https://raw.githubusercontent.com/WrightonLabCSU/DRAM/master/data/methylotrophy/methylotrophy_distillate.tsv
DRAM.py distill -i dram_output/annotations.tsv -o dram_output/distillate --custom_distillate methylotrophy_distillate.tsv

3、运行DRAM

Once DRAM is set up you are ready to annotate some MAGs. The following commands will generate the full annotation and distillation of genomes:

基因组完整注释和提取

####DRAM注释
DRAM.py annotate -i 'my_bins/*.fa' -o annotation
DRAM.py distill -i annotation/annotations.tsv -o distill --trna_path annotation/trnas.tsv --rrna_path annotation/rrnas.tsv

###以下是官方的说明:
my_bins should be replaced with the path to a directory which contains all of your bins you would like to annotate. If you only need to annotate a single genome (or an entire assembly) a direct path to a nucleotide fasta should be provided. Using 20 processors, DRAM.py takes about 17 hours to annotate ~80 MAGs of medium quality or higher from a mouse gut metagenome.

###看到没?肠道宏基因组80个基因组需要20线程17个小时。

##再附上输入输出说明:
DRAM annotate key parameters
Input files: Key input quality files
Input fasta: fasta file or a string with wildcards (e.g. ‘MAGs/*.fa’) that leads to multiple fastas
Bin taxonomy: a tab separated table with the first column being the names of the bins used as input to DRAM and another column with the header 'classification'. The output of GTDB-tk is already in this format and can be used directly.
Bin quality: a tab separated table with the first column being the names of the bins used as input to DRAM and additional columns with the headers 'Completeness' giving genome completeness information and 'Contamination' giving genome contamination information. The output of checkM is already in this format and can be used directly.
Output directory: Folder to be created that will store output files
Technical Parameters: These parameters effect results and resource use
Minimum contig size: Used for gene prediction, the defalt is 2500,
Minimum bit score for MMSeqs2 searches: 60
Minimum bit score for reverse best hit MMSeqs2 searches: 350
Number of threads to use: 10
Speed and Resources: These arguments make DRAM run faster but at a cost.
Use Uniref: Drastically decreases run time and memory requirements if set to False: True
Low Mem Mode, Skip annotating with uniref, use kofam over KEGG genes: False
Skip Trnascan: False
Troubleshooting: These additional arguments are popular for more specialized analyses.
Keep Tmp Dir', action='store_true', default=False)
Threads, number of processors to use: 10
Specialization: These additional arguments are popular for more specialized analyses.
Custom fasta Databases Locations: Used in blast style searches, see "Additional Databases" section.
Custom fasta Databases Names: Used in blast style searches, see "Additional Databases" section.
Custom HMM Databases Names: Used in HMM searches, see "Additional Databases" section.
Custom HMM Databases Locations: Used in HMM searches, see "Additional Databases" section.
Custom HMM Cutoff Locations: Used in HMM searches, see "Additional Databases" section.
GTDB taxonomy,'Summary file from gtdbtk taxonomy assignment from bins, can be used multiple times'
Less Popular: These arguments are rarely used, but you may need them in some cases
Mode of prodigal:
Translation table for prodigal.
DRAM annotate Outputs
Tab separated file (.tsv) with all the annotations from Pfam, KEGG, UniProt, dbCAN, and MEROPS databases for all genes in all the input genomes
GenBank files for each genome
Single gene-finding format (.gff) file of all annotations across genomes
Single fasta format file (.fasta) of each open reading frame nucleotide sequence and best ranked annotation (see Annotation grades section)
Single fasta format file (.fasta) of each translated open reading frame amino acid sequence and best ranked annotation KEGG annotation
Tab separated files (.tsv) with tRNAs and rRNAs

使用示例:

Example 1.1

Suppose you have 2 FASTAs fasta_1.fa and fasta_2.fa you want to name them A_seqs and B_seqs respectively. You also have 2 hmms profils_cutoffs.hmm and profiles_bitscor.hmm, the first hmm you want to use custom cutoffs in a tsv file named cutoffs.tsv and the second you want to use bit score, you want to name them hmm_A, and hmm_B. The command that you would need to use is then.

# Assume all files are in the working directory.
DRAM.py annotate \
        -i <input path or regex> \
        -o <output path> \
        --threads 20 \
        --custom_fasta_loc ./fasta_1.fa \
        --custom_db_name A_seqs \
        --custom_fasta_loc ./fasta_2.fa \
        --custom_db_name  B_seqs \
        --custom_hmm_name hmm_A \
        --custom_hmm_loc ./profils_cutoffs.hmm\
        --custom_hmm_cutoffs_loc ./cutoffs.tsv \
        --custom_hmm_name hmm_B \
        --custom_hmm_loc ./profiles_bitscor.hmm # this hmm will use bitscores

Again, the order of the arguments determines the interpretation.

DRAM Annotate Called Genes

You can annotate already called genes in DRAM, if necessary, and get most of the same output, the gff output will not be generated for example but annotations will be made and distillation will be possible. You may want to check that the names of your genes are to your liking in the FAA file as those names will be carried over and may be changed by the software that you generated the file with, including Dram. You should also note that this command works on only one faa at a time. As of the 1.3 release custom HMMs are not supported though custom FASTAs are. The commands are otherwise the same. See the example below.

Example 1.2

Suppose you have a FASTA of Amino Acid Sequences fasta.faa. The command that you would need to use is then.

# Assume all files are in the working directory.
DRAM.py annotate-genes \
        -i <input path to the genes faa, NO REGEX> \
        -o <output path> \
        --threads 20 \
        --custom_fasta_loc ./fasta_1.fa \
        --custom_db_name A_seqs \
        --custom_fasta_loc ./fasta_2.fa \
        --custom_db_name  B_seqs \

DRAM distill

After your annotation is finished, you can summarize these annotations with the following command:

DRAM.py distill -i annotation/annotations.tsv -o genome_summaries --trna_path annotation/trnas.tsv --rrna_path annotation/rrnas.tsv

This command will generate three files. The first is called genome_summary.xlsx which contains a summary of metabolisms present in each genome. It gives gene by gene information across various metabolisms for every genome in your dataset. The genome_statistics.tsv file contains all measures required by the MIMAG about each fasta used as input. Finally, the liquor.html is an interactive html that allows users to hover over each box to see what genes prompted the box color (Example here) and was manually curated to consider alternate genes for pathways and single processes. This heat map allows the user to quickly profile ecosystem relevant processes across hundreds of genomes.

DRAM strainer

After you have completed your annotation and distillation, you may want to further analyze genes of interest by making trees or functional modeling. To pull the genes you can use DRAM.py strainer. For example, if you want to pull all pmoa/amoa genes based on KEGG annotations you can make a tree:

DRAM.py strainer --identifiers K10944 -i annotations.tsv -f genes.faa -o amoa_pmoa_genes.faa

Or you might want to blast a few specific genes:

DRAM.py strainer --genes bin.2_scaffold_2_3 bin.4_scaffold_12_42 -i annotations.tsv -f genes.dna -on my_genes.fna

Or maybe you only want to see genes that are involved in glycolysis or the TCA cycle that are from bins from the Roseburia genus:

DRAM.py strainer -i hmp_bins/annotations.tsv -f hmp_bins/genes.fna -o genes.roseburia.glycoloysis_tca.fna --taxonomy g__Roseburia --categories glycolysis TCA
DRAM strainer parameters
  • Input files:
    • Annotations: annotations.tsv file generated during the annotate step
    • Input fasta: genes fasta file (.faa or .fna) to be filtered
    • Output fasta: location to save filtered fasta file
  • Default Parameters:
    • Fastas: None
    • Scaffolds: None
    • Genes: None
    • Identifiers: None

4、运行DRAM-v

The contigs must be processed with VirSorter and the processed viral contigs and VIRSorter_affi-contigs.tab are used as input to DRAM-v. The following commands will generate the full annotation and distillation of viral contigs:

基于virsorter的结果进行注释,相当于过滤了。

所以其实这里还需要安装virsorter软件,virsorter的操作使用后面再补上

DRAM-v.py annotate -i my_viral_contigs.fa -v VIRSorter_affi-contigs.tab -o annotation

##In the output annotation folder there will be the same collection of files as is generated when running DRAM.py. The only change is the addition of columns for VIRSorter gene category, auxiliary score and metabolic flags to the annotations.tsv output file.

DRAM-v.py distill -i annotation/annotations.tsv -o annotation/distilled

DRAM-v strainer

DRAM-v strainer filters down fasta files to only contain genes or scaffolds that meet criteria set by the user. For example, if you want to get the amino acid sequences of all genes annotated with the GH4 and GH5 families in fasta format to make a tree then you can do that with this command:

DRAM-v.py strainer --identifiers GH4 GH5 -i annotations.tsv -f genes.faa -o GH4_GH5_genes.faa

Or if you want to only get scaffolds 34 and 52 from the fasta bin.4 then you can use this command:

DRAM-v.py strainer --scaffolds bin.4_scaffold_34 bin.4_scaffold_52 -i annotations.tsv -f scaffolds.fna -o GH4_GH5_genes.faa

If you only want to get the genes considered potential AMGs that are transporters use this command:

DRAM-v.py strainer -i hmp_viruses/annotations.tsv -f hmp_viruses/genes.fna -o genes.amgs.fna -a --categories Transporters

If I only want genes that have a 'V' flag and auxiliary scores of 4 or 5:

DRAM-v.py strainer -i hmp_viruses/annotations.tsv -f hmp_viruses/genes.fna -o genes.viral.fna --aux_scores 4 5 --amg_flags V

DRAM-v strainer parameters

  • Input files
    • Annotations: annotations.tsv file generated during the annotate step
    • Input fasta: genes fasta file (.faa or .fna) to be filtered
    • Output fasta: location to save filtered fasta file
  • Default Parameters
    • fastas: None
    • Scaffolds: None
    • Genes: None
    • Identifiers: None

5、系统资源需求:

DRAM has a large memory burden and is designed to be run on high performance computers. DRAM annotates against a large variety of databases which must be processed and stored. Setting up DRAM with KEGG Genes and UniRef90 will take up ~500 GB of storage after processing and require ~512 GB of RAM while using KOfam and skipping UniRef90 will mean all processed databases will take up ~30 GB on disk and will only use ~128 GB of RAM while processing. DRAM annotation memory usage depends on the databases used. When annotating with UniRef90 around 220 GB of RAM is required. If the KEGG gene database has been provided and UniRef90 is not used then memory usage is around 100 GB of RAM. If KOfam is used to annotate KEGG and UniRef90 is not used then less than 50 GB of RAM is required. DRAM can be run with any number of processors on a single node.

DRAM annotate functions are only tested in linux and DRAM distillation functions are tested in linux and macOS environments. It will likely work in OSX environments. It is unlikely to work in Windows.

看不懂的百度翻译吧,反正需求内存不小。

DRAM具有很大的内存负担,并且被设计为在高性能计算机上运行。DRAM针对必须处理和存储的各种数据库进行注释。使用KEGG Genes和UniRef90设置DRAM在处理后将占用约500 GB的存储空间,并且在使用KOfam时需要约512 GB的RAM。跳过UniRef90将意味着所有处理后的数据库将占用约30 GB的磁盘空间,在处理时仅使用约128 GB的RAM。DRAM注释内存的使用情况取决于所使用的数据库。使用UniRef90进行注释时,需要大约220 GB的RAM。如果已经提供了KEGG基因数据库,并且没有使用UniRef90,那么存储器的使用量大约是100GB的RAM。如果使用KOfam对KEGG进行注释,而未使用UniRef90,则需要少于50 GB的RAM。DRAM可以在单个节点上与任何数量的处理器一起运行。
DRAM注释函数仅在linux中测试,DRAM提取函数在linux和macOS环境中测试。它可能在OSX环境中工作。它不太可能在Windows中工作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1243132.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

低代码表单设计器:可视化+灵活+易操作,降本增效轻松实现!

在现代化办公环境中&#xff0c;拥有先进的低代码表单设计器&#xff0c;可以让企业降本又增效&#xff0c;节约企业成本的同时&#xff0c;也能高效利用企业内部资源&#xff0c;为实现数字化转型升级提供夯实根基。那么&#xff0c;低代码表单设计器拥有什么样的特点&#xf…

志愿服务暖人心,村委致谢送锦旗

“衷心感谢济宁市运河义工服务协会对我们村里的大学生凯凯一直以来的关注和帮扶。真是太谢谢您们了&#xff0c;如不是您们的帮助孩子也不能那么放心地去上大学&#xff0c;毕竟家里有从小就相依为命的年迈的奶奶&#xff0c;是他一直的担心和牵挂&#xff0c; 咱们协会不仅对孩…

Django中间件与csrf

一. django中间件 1. 什么是django中间件 # django中间件是django的门户1. 请求来的时候需要先经过中间件才能到达真正的django后端2. 响应走的时候最后也需要经过中间件才能发送出去 2. django中间件的个数 django自带七个中间件, 分别是SecurityMiddleware, SessionMiddle…

Linux宝塔面板搭建Discuz论坛, 并内网穿透实现公网访问

Linux宝塔面板搭建Discuz论坛&#xff0c; 并内网穿透实现公网访问 文章目录 Linux宝塔面板搭建Discuz论坛&#xff0c; 并内网穿透实现公网访问前言1.安装基础环境2.一键部署Discuz3.安装cpolar工具4.配置域名访问Discuz5.固定域名公网地址6.配置Discuz论坛 &#x1f4f7; 江池…

深兰科技“汉境”入选2023年湖北省人工智能十大优秀应用案例

11月18日&#xff0c;央视“专精特新制造强国”城市大会在湖北武汉召开。会上&#xff0c;正式发布了“湖北省工业互联网标识十大优秀应用案例”&#xff0c;由深兰科技(武汉)股份有限公司基于AIGC多模态融合大模型技术开发打造的江汉路步行街元宇宙场景应用——汉境&#xff0…

Python爬虫基础教程之urllib和requests的区别详解

文章目录 前言1、获取网页数据第一步&#xff0c;引入模块。第二步&#xff0c;简单网页发起的请求。第三步&#xff0c;数据封装。 2、解析网页数据3.保存数据关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项…

关于ElectronVue3中集成讯飞星火AI

前言&#xff1a;我的最终目的是为了在QQ上集成一个AI机器人&#xff0c;因此在这里先实现一个简单的集成 先上效果图 总体还是很简单的&#xff0c;我在调用websock获取回复内容的基础上另外集成了一个事件总线&#xff0c;让我们在调用获取消息的时候能够更加方便快捷 工具代…

【SwiftUI】7.预览及其内部机制

上一篇讲到了组件及组件化&#xff0c;从概念和优/缺点两个方向说明了组件化的意义&#xff0c;更为重要的是&#xff0c;组件和组件化是一个在编程领域&#xff0c;放之四海皆可以的概念&#xff0c;理解和运用它是非常必要的&#xff0c;希望大家能掌握。今天我们介绍另一个特…

Spring第一课,了解IDEA里面的文件,回顾Cookie和Session,获取Session,Cookie,Header的方式

目录 IDEA第一课&#xff08;熟悉里面内容&#xff09; 建立连接 -RequestMapping 路由映射 请求 1.传递单个参数​编辑 2.多个参数​编辑 3.传递数组 4.传递一个集合&#xff0c;但是这里我们传递的时候发生了500的错误 简单介绍JSON 回顾Cookie和S…

软文推广中如何提炼好产品卖点,媒介盒子分享

内容同质化的时代下&#xff0c;企业应该如何让用户留下印象&#xff0c;并且成功将产品卖出去&#xff0c;核心思维就在于提炼产品卖点&#xff0c;产品卖点是销量提升的关键&#xff0c;相信企业在推广产品时都会有点困惑&#xff0c;感觉自家产品和竞品比起来只是logo、外观…

【SpringCloud】为什么选择微服务?

一般的平台会遇到的问题&#xff1a; 服务配置复杂。基础服务多&#xff0c;服务的资源配置复杂&#xff0c;传统方式管理服务复杂 服务之间调用复杂。检索服务、用户中心服务等&#xff0c;服务之间的调用复杂&#xff0c;依赖多 服务监控难度大。服务比较多&#xff0c;…

【SpringCloud】什么是微服务?

一、单体架构 单体架构就是把所有业务模块编写在一个项目&#xff0c;最终打包成一个 war 包&#xff0c;进行部署 单体架构的优点&#xff1a; 部署简单&#xff1a;由于是完整的结构体&#xff0c;可以直接部署在一个服务器上即可 技术单一&#xff1a;项目不需要复杂的…

世界这么大,极米投影仪RS Pro 3任意门带你“云旅游”

在繁忙的工作之后&#xff0c;许多小伙伴选择出门旅游&#xff0c;但也有不少人想在家“躺平”。其实&#xff0c;对于当代年轻人来说&#xff0c;行走在钢筋混凝土丛林&#xff0c;在家用智能投影观影娱乐好好放松身心也是不错的选择。有一台投影仪来相伴&#xff0c;能够抚平…

Let’s xrOS 一款让你优先体验社区创作者的 visionOS App工具

Let’s xrOS Apple Vision Pro 发布预示着空间计算时代的到来&#xff0c;让科技爱好者和开发者开始思考如何在新的交互、系统和硬件上打造独特的三维应用。 自 WWDC 2023 的发布会后&#xff0c;社交媒体上涌现了许多精美的 visionOS App 的效果图和演示视频&#xff0c;然而…

Mac安装配置typescript及在VSCode上运行ts

一、Mac上安装typescript sudo npm install -g typescript 测试一下&#xff1a;出现Version则证明安装成功 tsc -v 二、在VSCode上运行 新建一个xxx.ts文件&#xff0c;测试能否运行 console.log("helloworld") 运行报错&#xff1a;ts-node: command not…

【无标题】学习HTML

由于工作需求&#xff0c;学习了一些html的相关知识&#xff0c;最终应用到打印功能上使用。 HTML是指超文本标记语言&#xff08;HyperText Markup Language&#xff09;。它是一种用于创建和呈现互联网上页面的标准标记语言。HTML是Web开发的基础&#xff0c;是构建网页和应…

关于SseEmitter(SSE)在本地可以响应,部署到服务器后无法响应的问题

关于SseEmitter(SSE)在本地可以响应&#xff0c;部署到服务器后无法响应的问题 GetMapping(value "/v3/detail", produces MediaType.TEXT_EVENT_STREAM_VALUE) ResponseBody public SseEmitter v3Detail(String id) {SseEmitter emitter new SseEmitter((long) …

探究Kafka原理-2.Kafka基本命令实操

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理&#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44…

【开源】基于JAVA的高校实验室管理系统

项目编号&#xff1a; S 015 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S015&#xff0c;文末获取源码。} 项目编号&#xff1a;S015&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 实验室类型模块2.2 实验室模块2.3 实…

2023年第十六届中国系统架构师大会(SACC2023)-核心PPT资料下载

一、峰会简介 本届大会以“数字转型 架构演进”为主题&#xff0c; 涵盖多个热门领域&#xff0c;如多云多活、海量分布式存储、容器、云成本、AIGC大数据等&#xff0c;同时还关注系统架构在各个行业中的应用&#xff0c;如金融、制造业、互联网、教育等。 与往届相比&#…