分布式锁之传统锁回顾(一)

news2024/12/26 12:58:35

1. 传统锁回顾

1.1. 从减库存聊起

多线程并发安全问题最典型的代表就是超卖现象

库存在并发量较大情况下很容易发生超卖现象,一旦发生超卖现象,就会出现多成交了订单而发不了货的情况。

场景:

商品S库存余量为5时,用户A和B同时来购买一个商品,此时查询库存数都为5,库存充足则开始减库存:

用户A:update db_stock set stock = stock - 1 where id = 1

用户B:update db_stock set stock = stock - 1 where id = 1

并发情况下,更新后的结果可能是4,而实际的最终库存量应该是3才对

1.2. 环境准备

建表语句:

CREATE TABLE `db_stock` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `product_code` varchar(255) DEFAULT NULL COMMENT '商品编号',
  `stock_code` varchar(255) DEFAULT NULL COMMENT '仓库编号',
  `count` int(11) DEFAULT NULL COMMENT '库存量',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

表中数据如下:

1001商品在001仓库有5000件库存。

创建分布式锁demo工程:

创建好之后:

pom.xml如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.2.11.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.atguigu</groupId>
    <artifactId>distributed-lock</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>distributed-lock</name>
    <description>分布式锁demo工程</description>

    <properties>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.46</version>
        </dependency>

        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.4.0</version>
        </dependency>

        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.16</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.junit.vintage</groupId>
                    <artifactId>junit-vintage-engine</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>

application.yml配置文件:

server:
  port: 6000
spring:
  datasource:
    driver-class-name: com.mysql.jdbc.Driver
    url: jdbc:mysql://172.16.116.100:3306/test
    username: root
    password: root
  redis:
    host: 172.16.116.100

DistributedLockApplication启动类:

@SpringBootApplication
@MapperScan("com.atguigu.distributedlock.mapper")
public class DistributedLockApplication {

    public static void main(String[] args) {
        SpringApplication.run(DistributedLockApplication.class, args);
    }

}

Stock实体类:

@Data
@TableName("db_stock")
public class Stock {

    @TableId
    private Long id;

    private String productCode;

    private String stockCode;

    private Integer count;
}

StockMapper接口:

public interface StockMapper extends BaseMapper<Stock> {
}

1.3. 简单实现减库存

接下来咱们代码实操一下。

StockController:

@RestController
public class StockController {

    @Autowired
    private StockService stockService;

    @GetMapping("check/lock")
    public String checkAndLock(){

        this.stockService.checkAndLock();

        return "验库存并锁库存成功!";
    }
}

StockService:

@Service
public class StockService {

    @Autowired
    private StockMapper stockMapper;

    public void checkAndLock() {

        // 先查询库存是否充足
        Stock stock = this.stockMapper.selectById(1L);

        // 再减库存
        if (stock != null && stock.getCount() > 0){
            stock.setCount(stock.getCount() - 1);
            this.stockMapper.updateById(stock);
        }
    }
}

测试:

查看数据库:

在浏览器中一个一个访问时,每访问一次,库存量减1,没有任何问题。

1.4. 演示超卖现象

接下来咱们使用jmeter压力测试工具,高并发下压测一下,添加线程组:并发100循环50次,即5000次请求。

给线程组添加HTTP Request请求:

填写测试接口路径如下:

再选择你想要的测试报表,例如这里选择聚合报告:

启动测试,查看压力测试报告:

  • Label 取样器别名,如果勾选Include group name ,则会添加线程组的名称作为前缀

  • # Samples 取样器运行次数

  • Average 请求(事务)的平均响应时间

  • Median 中位数

  • 90% Line 90%用户响应时间

  • 95% Line 90%用户响应时间

  • 99% Line 90%用户响应时间

  • Min 最小响应时间

  • Max 最大响应时间

  • Error 错误率

  • Throughput 吞吐率

  • Received KB/sec 每秒收到的千字节

  • Sent KB/sec 每秒收到的千字节

测试结果:请求总数5000次,平均请求时间37ms,中位数(50%)请求是在36ms内完成的,错误率0%,每秒钟平均吞吐量2568.1次。

查看mysql数据库剩余库存数:还有4870

此时如果还有人来下单,就会出现超卖现象(别人购买成功,而无货可发)。

1.5. jvm锁问题演示

1.5.1. 添加jvm锁

使用jvm锁(synchronized关键字或者ReetrantLock)试试:

重启tomcat服务,再次使用jmeter压力测试,效果如下:

查看mysql数据库:

并没有发生超卖现象,完美解决。

1.5.2. 原理

添加synchronized关键字之后,StockService就具备了对象锁,由于添加了独占的排他锁,同一时刻只有一个请求能够获取到锁,并减库存。此时,所有请求只会one-by-one执行下去,也就不会发生超卖现象。

1.6. 多服务问题

使用jvm锁在单工程单服务情况下确实没有问题,但是在集群情况下会怎样?

接下启动多个服务并使用nginx负载均衡,结构如下:

启动三个服务(端口号分别8000 8100 8200),如下:

1.6.1. 安装配置nginx

基于安装nginx:

# 拉取镜像
docker pull nginx:latest
# 创建nginx对应资源、日志及配置目录
mkdir -p /opt/nginx/logs /opt/nginx/conf /opt/nginx/html
# 先在conf目录下创建nginx.conf文件,配置内容参照下方
# 再运行容器
docker run -d -p 80:80 --name nginx -v /opt/nginx/html:/usr/share/nginx/html -v /opt/nginx/conf/nginx.conf:/etc/nginx/nginx.conf -v /opt/nginx/logs:/var/log/nginx nginx

nginx.conf配置如下:

user  nginx;
worker_processes  1;

error_log  /var/log/nginx/error.log warn;
pid        /var/run/nginx.pid;

events {
    worker_connections  1024;
}

http {
    include       /etc/nginx/mime.types;
    default_type  application/octet-stream;

    log_format  main  '$remote_addr - $remote_user [$time_local] "$request" '
                      '$status $body_bytes_sent "$http_referer" '
                      '"$http_user_agent" "$http_x_forwarded_for"';

    access_log  /var/log/nginx/access.log  main;

    sendfile        on;
    #tcp_nopush     on;

    keepalive_timeout  65;

    #gzip  on;

    #include /etc/nginx/conf.d/*.conf;
	
	upstream distributed {
		server 172.16.116.1:8000;
		server 172.16.116.1:8100;
		server 172.16.116.1:8200;
	}
	
	server {
		listen       80;
        server_name  172.16.116.100;
		location / {
			proxy_pass http://distributed;
		}
	}
	
}

在浏览器中测试:172.16.116.100是我的nginx服务器地址

经过测试,通过nginx访问服务一切正常。

1.6.2. Jmeter压力测试

注意:先把数据库库存量还原到5000。

参照之前的测试用例,再创建一个新的测试组:参数给之前一样

配置nginx的地址及 服务的访问路径如下:

测试结果:性能只是略有提升。

数据库库存剩余量如下:

又出现了并发问题,即出现了超卖现象。

1.7. mysql锁演示

除了使用jvm锁之外,还可以使用数据锁:悲观锁 或者 乐观锁

  1. 一个sql:直接更新时判断,在更新中判断库存是否大于0

    update table set surplus = (surplus - buyQuantity) where id = 1 and (surplus - buyQuantity) > 0 ;

  2. 悲观锁:在读取数据时锁住那几行,其他对这几行的更新需要等到悲观锁结束时才能继续 。

    select ... for update

  3. 乐观锁:读取数据时不锁,更新时检查是否数据已经被更新过,如果是则取消当前更新进行重试。

    version 或者 时间戳(CAS思想)。

1.7.1. 一个sql

略。。

1.7.2. 悲观锁

在MySQL的InnoDB中,预设的Tansaction isolation level 为REPEATABLE READ(可重读)

在SELECT 的读取锁定主要分为两种方式:

  • SELECT ... LOCK IN SHARE MODE (共享锁)

  • SELECT ... FOR UPDATE (悲观锁)

这两种方式在事务(Transaction) 进行当中SELECT 到同一个数据表时,都必须等待其它事务数据被提交(Commit)后才会执行。

而主要的不同在于LOCK IN SHARE MODE 在有一方事务要Update 同一个表单时很容易造成死锁。

简单的说,如果SELECT 后面若要UPDATE 同一个表单,最好使用SELECT ... FOR UPDATE。

代码实现

改造StockService:

在StockeMapper中定义selectStockForUpdate方法:

public interface StockMapper extends BaseMapper<Stock> {

    public Stock selectStockForUpdate(Long id);
}

在StockMapper.xml中定义对应的配置:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
        "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.atguigu.distributedlock.mapper.StockMapper">

    <select id="selectStockForUpdate" resultType="com.atguigu.distributedlock.pojo.Stock">
        select * from db_stock where id = #{id} for update
    </select>
</mapper>

压力测试

注意:测试之前,需要把库存量改成5000。压测数据如下:比jvm性能高很多,比无锁要低将近1倍

mysql数据库存:

1.7.3. 乐观锁

乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则重试。那么我们如何实现乐观锁呢

使用数据版本(Version)记录机制实现,这是乐观锁最常用的实现 方式。一般是通过为数据库表增加一个数字类型的 “version” 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录 的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新。

给db_stock表添加version字段:

对应也需要给Stock实体类添加version属性。此处略。。。。

代码实现

public void checkAndLock() {

    // 先查询库存是否充足
    Stock stock = this.stockMapper.selectById(1L);

    // 再减库存
    if (stock != null && stock.getCount() > 0){
        // 获取版本号
        Long version = stock.getVersion();

        stock.setCount(stock.getCount() - 1);
        // 每次更新 版本号 + 1
        stock.setVersion(stock.getVersion() + 1);
        // 更新之前先判断是否是之前查询的那个版本,如果不是重试
        if (this.stockMapper.update(stock, new UpdateWrapper<Stock>().eq("id", stock.getId()).eq("version", version)) == 0) {
            checkAndLock();
        }
    }
}

重启后使用jmeter压力测试工具结果如下:

修改测试参数如下:

测试结果如下:

说明乐观锁在并发量越大的情况下,性能越低(因为需要大量的重试);并发量越小,性能越高。

1.7.4. mysql锁总结

性能:一个sql > 悲观锁 > jvm锁 > 乐观锁

如果追求极致性能、业务场景简单并且不需要记录数据前后变化的情况下。

优先选择:一个sql

如果写并发量较低(多读),争抢不是很激烈的情况下优先选择:乐观锁

如果写并发量较高,一般会经常冲突,此时选择乐观锁的话,会导致业务代码不间断的重试。

优先选择:mysql悲观锁

不推荐jvm本地锁。

1.8. redis乐观锁

利用redis监听 + 事务

watch stock
multi
set stock 5000
exec

如果执行过程中stock的值没有被其他链接改变,则执行成功

如果执行过程中stock的值被改变,则执行失败效果如下:

具体代码实现,只需要改造对应的service方法:

public void deduct() {

    this.redisTemplate.execute(new SessionCallback() {
        @Override
        public Object execute(RedisOperations operations) throws DataAccessException {
            operations.watch("stock");
            // 1. 查询库存信息
            Object stock = operations.opsForValue().get("stock");
            // 2. 判断库存是否充足
            int st = 0;
            if (stock != null && (st = Integer.parseInt(stock.toString())) > 0) {
                // 3. 扣减库存
                operations.multi();
                operations.opsForValue().set("stock", String.valueOf(--st));
                List exec = operations.exec();
                if (exec == null || exec.size() == 0) {
                    try {
                        Thread.sleep(50);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    deduct();
                }
                return exec;
            }
            return null;
        }
    });
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1241555.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

智能导视电子指路牌是什么?

SVIP-3800系列智能电子指路牌也称智慧指路灯杆&#xff0c;智能指路牌&#xff0c;导航立柱&#xff0c;多功能指示牌&#xff0c;多功能路标&#xff0c;智能指路机器人&#xff0c;智能导视指路牌&#xff0c;问路导航机器人&#xff0c;智能路牌&#xff0c;叁仟智慧路牌、智…

电商数据采集|电商API接口接入|从京东平台获取商品SKU 主图 价格 详情数据

在进行API开发过程中&#xff0c;数据异常常常令人头痛。我们的API开车软件经过精心设计和测试&#xff0c;能够准确识别并及时处理各类数据异常。拥有稳定的运行环境&#xff0c;保障了您的开发进程不受干扰&#xff0c;让您的工作更加顺畅高效。 京东获得JD商品详情 API 返…

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统

AI为工业产业智能化数字化赋能早已不是什么新鲜事&#xff0c;越来越多的行业和领域开始更大范围去拥抱AI&#xff0c;享受科技带来的变革力量&#xff0c;在我们之前的文章中也有很多相关领域项目的实践经历&#xff0c;本文的核心目标就是想要基于钢铁领域产品数据来开发构建…

VirtualBox下win主机如何访问linux虚拟机文件夹

目录 ​编辑 方法1&#xff1a;通过VirtualBox自带的共享文件夹&#xff08;Win->linux&#xff09; 方法2&#xff1a;通过Samba方法本地网络访问(Linux->win) 我使用的VirtualBox版本为7.0.4,主机是Window系统&#xff0c;虚拟机是Linux系统 方法1&#xff1a;通过Vir…

易点易动设备管理系统提升设备能耗管理和设备状态监控效率

如今&#xff0c;能源效率和设备状态监控对于企业来说变得越发重要。传统的设备管理方式往往存在能耗浪费和难以实时监控设备状态的问题。为了解决这些问题&#xff0c;易点易动设备管理系统应运而生。本文将介绍易点易动设备管理系统的功能和优势&#xff0c;以及如何通过它提…

深度学习之六(自编码器--Autoencoder)

概念 自编码器(Autoencoder)是一种神经网络架构,用于无监督学习和数据的降维表示。它由两部分组成:编码器(Encoder)和解码器(Decoder)。 结构: 编码器(Encoder): 接收输入数据并将其压缩为潜在表示(latent representation),通常比输入数据的维度要低。编码器的…

Sam Altman回归OpenAI,新董事会成员曝光!

11月22日下午&#xff0c;OpenAI在社交平台宣布&#xff0c;在原则上已达成协议&#xff0c;让 Sam Altman重返 OpenAI担任首席执行官&#xff0c;并重组董事会。稍后会公布更详细的内容。 初始董事会成员包括前Salesforce联合首席执行官Bret Taylor&#xff08;担任主席&…

【AI读论文】AutoML的8年回顾:分类、综述与趋势

论文标题&#xff1a;Eight years of AutoML: categorisation, review and trends 论文链接&#xff1a;https://link.springer.com/article/10.1007/s10115-023-01935-1 本文主要围绕自动机器学习&#xff08;AutoML&#xff09;展开了系统性的文献综述&#xff0c;总结了该领…

德迅云安全-德迅卫士:保障您的主机安全

主机安全是指保证主机在数据存储和处理的保密性、完整性、可用性&#xff0c;包括硬件、固件、系统软件的自身安全&#xff0c;以及一系列附加的安全技术和安全管理措施。 为什么要主机安全&#xff1f; 服务器一旦被黑客入侵&#xff0c;个人和企业面临以下安全风险&#xff…

基于springboot实现家政服务管理平台项目【项目源码+论文说明】

摘要 随着家政服务行业的不断发展&#xff0c;家政服务在现实生活中的使用和普及&#xff0c;家政服务行业成为近年内出现的一个新行业&#xff0c;并且能够成为大众广为认可和接受的行为和选择。设计家政服务管理平台的目的就是借助计算机让复杂的销售操作变简单&#xff0c;…

unity Toggle,初始时默认不选中,若选中则不可取消选中。不写码实现其效果

实现效果&#xff1a; 初始默认时&#xff1a; 选中时&#xff1a; 零代码实现&#xff1a; 步骤1 步骤2 步骤3

Pycharm设置文件头部声明注释

设置头部声明 英文版&#xff1a;点击file-->settings-->editor-->file and code templates-->选择Python Script 中文版如下&#xff1a; 复制如下内容 #!/usr/bin/env python # -*- coding: utf-8 -*- # Time : 2023/11/23 10:05 # Author : wyq # File …

Python + Docker 还是 Rust + WebAssembly?

在不断发展的技术世界中&#xff0c;由大语言模型驱动的应用程序&#xff0c;通常被称为“LLM 应用”&#xff0c;已成为各种行业技术创新背后的驱动力。随着这些应用程序的普及&#xff0c;用户需求的大量涌入对底层基础设施的性能、安全性和可靠性提出了新的挑战。 Python 和…

微信开放平台Android平台应用签名怎么填写

winR 输入cmd 进到本地签名文件的目录下 输入 keytool -list -v -keystore <keystore文件路径> -alias <别名>请将 <keystore文件路径> 替换为您的密钥库文件&#xff08;通常是 .jks 或 .keystore 文件&#xff09;的路径&#xff0c;而 <别名> 则是…

如何判断交流回馈老化测试负载是否合格?

交流回馈老化测试负载是用于模拟实际工作环境中设备运行状态的测试工具&#xff0c;主要用于检测设备的耐久性和稳定性。 负载性能&#xff1a;需要检查负载的性能是否符合设计要求&#xff0c;这包括负载的功率、电流、电压等参数是否在规定的范围内&#xff0c;以及负载的工作…

豪华程度堪比飞机头等舱?奔驰在北美发布Tourrider系列巴士

今年三月&#xff0c;奔驰工厂附近出现了一台特殊的测试车。其突出的前保险杠以及竖置双风挡等特殊配置&#xff0c;都在暗示着它并非是为欧洲市场打造。 根据特征推测&#xff0c;这台车应该是为北美市场打造。 就在昨天&#xff0c;奔驰发布了旗下全新Tourrider系列豪华客车&…

工业交换机具备哪些功能?

在工业网络中&#xff0c;工业交换机起着至关重要的作用&#xff0c;具备多样功能和广泛的应用。 1、工业交换机的作用是实现不同网络设备之间的互联。它能够连接各种不同类型的设备&#xff0c;如计算机、服务器、传感器和监控设备&#xff0c;实现设备间的相互通信和数据传输…

FreeRTOS源码阅读笔记5--mutex

互斥量是一种特殊的二值信号量&#xff0c;拥有优先级继承的机制&#xff0c;所以适合用在临界资源互斥访问。 5.1创建互斥量xSemaphoreCreateMutex() 5.1.1函数原型 5.1.2函数框架 5.2创建递归互斥量xSemaphoreCreateRecursiveMutex() 5.2.1函数原型 5.2.2函数框架 xSemaph…

Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告

1.前言 该文档主要是介绍通过机器学习模型LightGBM进行水电站流量入库预测。 对于水电站来说&#xff0c;发电是主要经济效益来源&#xff0c;而水就是生产的原料。对进入水电站水库的入库流量进行精准预测&#xff0c;能够帮助水电站对防洪、发电计划调度工作进行合理安排&…

阿里云经济型e实例云服务器怎么样?性能测评

阿里云服务器ECS推出经济型e系列&#xff0c;经济型e实例是阿里云面向个人开发者、学生、小微企业&#xff0c;在中小型网站建设、开发测试、轻量级应用等场景推出的全新入门级云服务器&#xff0c;CPU采用Intel Xeon Platinum架构处理器&#xff0c;支持1:1、1:2、1:4多种处理…