竞赛选题 车道线检测(自动驾驶 机器视觉)

news2025/1/11 21:06:52

0 前言

无人驾驶技术是机器学习为主的一门前沿领域,在无人驾驶领域中机器学习的各种算法随处可见,今天学长给大家介绍无人驾驶技术中的车道线检测。

1 车道线检测

在无人驾驶领域每一个任务都是相当复杂,看上去无从下手。那么面对这样极其复杂问题,我们解决问题方式从先尝试简化问题,然后由简入难一步一步尝试来一个一个地解决问题。车道线检测在无人驾驶中应该算是比较简单的任务,依赖计算机视觉一些相关技术,通过读取
camera 传入的图像数据进行分析,识别出车道线位置,我想这个对于 lidar
可能是无能为力。所以今天我们就从最简单任务说起,看看有哪些技术可以帮助我们检出车道线。

我们先把问题简化,所谓简化问题就是用一些条件限制来缩小车道线检测的问题。我们先看数据,也就是输入算法是车辆行驶的图像,输出车道线位置。

更多时候我们如何处理一件比较困难任务,可能有时候我们拿到任务时还没有任何思路,不要着急也不用想太多,我们先开始一步一步地做,从最简单的开始做起,随着做就会有思路,同样一些问题也会暴露出来。我们先找一段视频,这段视频是我从网上一个关于车道线检测项目中拿到的,也参考他的思路来做这件事。好现在就开始做这件事,那么最简单的事就是先读取视频,然后将其显示在屏幕以便于调试。

2 目标

检测图像中车道线位置,将车道线信息提供路径规划。

3 检测思路

  • 图像灰度处理
  • 图像高斯平滑处理
  • canny 边缘检测
  • 区域 Mask
  • 霍夫变换
  • 绘制车道线

4 代码实现

4.1 视频图像加载

    import cv2
​    import numpy as np
​    import sys
​    

    import pygame
    from pygame.locals import *
    
    class Display(object):
    
        def __init__(self,Width,Height):
            pygame.init()
            pygame.display.set_caption('Drive Video')
            self.screen = pygame.display.set_mode((Width,Height),0,32)
        def paint(self,draw):
            self.screen.fill([0,0,0])
    
            draw = cv2.transpose(draw)
            draw = pygame.surfarray.make_surface(draw)
            self.screen.blit(draw,(0,0))
            pygame.display.update()


​    
​    
​    if __name__ == "__main__":
​        solid_white_right_video_path = "test_videos/丹成学长车道线检测.mp4"
​        cap = cv2.VideoCapture(solid_white_right_video_path)
​        Width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
​        Height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
​    

        display = Display(Width,Height)
    
        while True:
            ret, draw = cap.read()
            draw = cv2.cvtColor(draw,cv2.COLOR_BGR2RGB)
            if ret == False:
                break
            display.paint(draw)
            for event in pygame.event.get():
                    if event.type == QUIT:
                        sys.exit()



上面代码学长就不多说了,默认大家对 python 是有所了解,关于如何使用 opencv 读取图片网上代码示例也很多,大家一看就懂。这里因为我用的是 mac
有时候显示视频图像可能会有些问题,所以我们用 pygame 来显示 opencv 读取图像。这个大家根据自己实际情况而定吧。值得说一句的是 opencv
读取图像是 BGR 格式,要想在 pygame 中正确显示图像就需要将 BGR 转换为 RGB 格式。

4.2 车道线区域

现在这个区域是我们根据观测图像绘制出来,

在这里插入图片描述

 def color_select(img,red_threshold=200,green_threshold=200,blue_threshold=200):
        ysize,xsize = img.shape[:2]
    

        color_select = np.copy(img)
    
        rgb_threshold = [red_threshold, green_threshold, blue_threshold]
    
        thresholds = (img[:,:,0] < rgb_threshold[0]) \
                | (img[:,:,1] < rgb_threshold[1]) \
                | (img[:,:,2] < rgb_threshold[2])
        color_select[thresholds] = [0,0,0]
    
        return color_select


效果如下:
在这里插入图片描述

4.3 区域

我们要检测车道线位置相对比较固定,通常出现车的前方,所以我们通过绘制,也就是仅检测我们关心区域。通过创建 mask 来过滤掉那些不关心的区域保留关心区域。

4.4 canny 边缘检测

有关边缘检测也是计算机视觉。首先利用梯度变化来检测图像中的边,如何识别图像的梯度变化呢,答案是卷积核。卷积核是就是不连续的像素上找到梯度变化较大位置。我们知道
sobal 核可以很好检测边缘,那么 canny 就是 sobal 核检测上进行优化。

# 示例代码,作者丹成学长:Q746876041def canny_edge_detect(img):
​        gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
​        kernel_size = 5
​        blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)
​    

        low_threshold = 180
        high_threshold = 240
        edges = cv2.Canny(blur_gray, low_threshold, high_threshold)
    
        return edges



在这里插入图片描述

4.5 霍夫变换(Hough transform)

霍夫变换是将 x 和 y 坐标系中的线映射表示在霍夫空间的点(m,b)。所以霍夫变换实际上一种由繁到简(类似降维)的操作。当使用 canny
进行边缘检测后图像可以交给霍夫变换进行简单图形(线、圆)等的识别。这里用霍夫变换在 canny 边缘检测结果中寻找直线。

    

        ignore_mask_color = 255 
        # 获取图片尺寸
        imshape = img.shape
        # 定义 mask 顶点
        vertices = np.array([[(0,imshape[0]),(450, 290), (490, 290), (imshape[1],imshape[0])]], dtype=np.int32)
        # 使用 fillpoly 来绘制 mask
        cv2.fillPoly(mask, vertices, ignore_mask_color)
        masked_edges = cv2.bitwise_and(edges, mask)
        # 定义Hough 变换的参数
        rho = 1 
        theta = np.pi/180
        threshold = 2
    
        min_line_length = 4 # 组成一条线的最小像素数
        max_line_gap = 5    # 可连接线段之间的最大像素间距
        # 创建一个用于绘制车道线的图片
        line_image = np.copy(img)*0 
    
        # 对于 canny 边缘检测结果应用 Hough 变换
        # 输出“线”是一个数组,其中包含检测到的线段的端点
        lines = cv2.HoughLinesP(masked_edges, rho, theta, threshold, np.array([]),
                                    min_line_length, max_line_gap)
    
        # 遍历“线”的数组来在 line_image 上绘制
        for line in lines:
            for x1,y1,x2,y2 in line:
                cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)
    
        color_edges = np.dstack((edges, edges, edges)) 
    
    import math
    import cv2
    import numpy as np
    
    """
    Gray Scale
    Gaussian Smoothing
    Canny Edge Detection
    Region Masking
    Hough Transform
    Draw Lines [Mark Lane Lines with different Color]
    """
    
    class SimpleLaneLineDetector(object):
        def __init__(self):
            pass
    
        def detect(self,img):
            # 图像灰度处理
            gray_img = self.grayscale(img)
            print(gray_img)
            #图像高斯平滑处理
            smoothed_img = self.gaussian_blur(img = gray_img, kernel_size = 5)
            #canny 边缘检测
            canny_img = self.canny(img = smoothed_img, low_threshold = 180, high_threshold = 240)
            #区域 Mask
            masked_img = self.region_of_interest(img = canny_img, vertices = self.get_vertices(img))
            #霍夫变换
            houghed_lines = self.hough_lines(img = masked_img, rho = 1, theta = np.pi/180, threshold = 20, min_line_len = 20, max_line_gap = 180)
            # 绘制车道线
            output = self.weighted_img(img = houghed_lines, initial_img = img, alpha=0.8, beta=1., gamma=0.)
            
            return output
        def grayscale(self,img):
            return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    
        def canny(self,img, low_threshold, high_threshold):
            return cv2.Canny(img, low_threshold, high_threshold)
    
        def gaussian_blur(self,img, kernel_size):
            return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
    
        def region_of_interest(self,img, vertices):
            mask = np.zeros_like(img)   
        
            if len(img.shape) > 2:
                channel_count = img.shape[2]  
                ignore_mask_color = (255,) * channel_count
            else:
                ignore_mask_color = 255
                
            cv2.fillPoly(mask, vertices, ignore_mask_color)
            
            masked_image = cv2.bitwise_and(img, mask)
            return masked_image
        def draw_lines(self,img, lines, color=[255, 0, 0], thickness=10):
            for line in lines:
                for x1,y1,x2,y2 in line:
                    cv2.line(img, (x1, y1), (x2, y2), color, thickness)
    
        def slope_lines(self,image,lines):
            img = image.copy()
            poly_vertices = []
            order = [0,1,3,2]
    
            left_lines = [] 
            right_lines = [] 
            for line in lines:
                for x1,y1,x2,y2 in line:
    
                    if x1 == x2:
                        pass 
                    else:
                        m = (y2 - y1) / (x2 - x1)
                        c = y1 - m * x1
    
                        if m < 0:
                            left_lines.append((m,c))
                        elif m >= 0:
                            right_lines.append((m,c))
    
            left_line = np.mean(left_lines, axis=0)
            right_line = np.mean(right_lines, axis=0)


​    
​            for slope, intercept in [left_line, right_line]:
​    

                rows, cols = image.shape[:2]
                y1= int(rows) 
    
                y2= int(rows*0.6)
    
                x1=int((y1-intercept)/slope)
                x2=int((y2-intercept)/slope)
                poly_vertices.append((x1, y1))
                poly_vertices.append((x2, y2))
                self.draw_lines(img, np.array([[[x1,y1,x2,y2]]]))
            
            poly_vertices = [poly_vertices[i] for i in order]
            cv2.fillPoly(img, pts = np.array([poly_vertices],'int32'), color = (0,255,0))
            return cv2.addWeighted(image,0.7,img,0.4,0.)
    
        def hough_lines(self,img, rho, theta, threshold, min_line_len, max_line_gap):
            lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)
            line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
            line_img = self.slope_lines(line_img,lines)
            return line_img
    
        def weighted_img(self,img, initial_img, alpha=0.1, beta=1., gamma=0.):
    
            lines_edges = cv2.addWeighted(initial_img, alpha, img, beta, gamma)
            return lines_edges
            
        def get_vertices(self,image):
            rows, cols = image.shape[:2]
            bottom_left  = [cols*0.15, rows]
            top_left     = [cols*0.45, rows*0.6]
            bottom_right = [cols*0.95, rows]
            top_right    = [cols*0.55, rows*0.6] 
            
            ver = np.array([[bottom_left, top_left, top_right, bottom_right]], dtype=np.int32)
            return ver



在这里插入图片描述

4.6 HoughLinesP 检测原理

接下来进入代码环节,学长详细给大家解释一下 HoughLinesP 参数的含义以及如何使用。


​ lines = cv2.HoughLinesP(cropped_image,2,np.pi/180,100,np.array([]),minLineLength=40,maxLineGap=5)

  • 第一参数是我们要检查的图片 Hough accumulator 数组
  • 第二个和第三个参数用于定义我们 Hough 坐标如何划分 bin,也就是小格的精度。我们通过曲线穿过 bin 格子来进行投票,我们根据投票数量来决定 p 和 theta 的值。2 表示我们小格宽度以像素为单位 。

在这里插入图片描述
我们可以通过下图划分小格,只要曲线穿过就会对小格进行投票,我们记录投票数量,记录最多的作为参数

在这里插入图片描述
在这里插入图片描述

  • 如果定义尺寸过大也就失去精度,如果定义格子尺寸过小虽然精度上来了,这样也会打来增长计算时间。
  • 接下来参数 100 表示我们投票为 100 以上的线才是符合要求是我们要找的线。也就是在 bin 小格子需要有 100 以上线相交于此才是我们要找的参数。
  • minLineLength 给 40 表示我们检查线长度不能小于 40 pixel
  • maxLineGap=5 作为线间断不能大于 5 pixel

4.6.1 定义显示车道线方法


​ def disply_lines(image,lines):
​ pass

通过定义函数将找到的车道线显示出来。


​ line_image = disply_lines(lane_image,lines)

4.6.2 查看探测车道线数据结构


​ def disply_lines(image,lines):
​ line_image = np.zeros_like(image)
​ if lines is not None:
​ for line in lines:
​ print(line)

先定义一个尺寸大小和原图一样的矩阵用于绘制查找到车道线,我们先判断一下是否已经找到车道线,lines 返回值应该不为 None
是一个矩阵,我们可以简单地打印一下看一下效果


​ [[704 418 927 641]]
​ [[704 426 791 516]]
​ [[320 703 445 494]]
​ [[585 301 663 381]]
​ [[630 341 670 383]]

4.6.3 探测车道线

看数据结构[[x1,y1,x2,y2]] 的二维数组,这就需要我们转换一下为一维数据[x1,y1,x2,y2]

def disply_lines(image,lines):
​        line_image = np.zeros_like(image)if liness is not None:for line in lines:
​                x1,y1,x2,y2 = line.reshape(4)
​                cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)return line_image
​    

line_image = disply_lines(lane_image,lines)
cv2.imshow('result',line_image)

在这里插入图片描述

4.6.4 合成

有关合成图片我们是将两张图片通过给一定权重进行叠加合成。

在这里插入图片描述

4.6.5 优化

在这里插入图片描述

探测到的车道线还是不够平滑,我们需要优化,基本思路就是对这些直线的斜率和截距取平均值然后将所有探测出点绘制到一条直线上。

  def average_slope_intercept(image,lines):
        left_fit = []
        right_fit = []
        for line in lines:
            x1, y1, x2, y2 = line.reshape(4)
            parameters = np.polyfit((x1,x2),(y1,y2),1)
            print(parameters)

这里学长定义两个数组 left_fit 和 right_fit 分别用于存放左右两侧车道线的点,我们打印一下 lines 的斜率和截距,通过 numpy
提供 polyfit 方法输入两个点我们就可以得到通过这些点的直线的斜率和截距。


​ [ 1. -286.]
​ [ 1.03448276 -302.27586207]
​ [ -1.672 1238.04 ]
​ [ 1.02564103 -299.



​ [ 1.02564103 -299.

def average_slope_intercept(image,lines):
    left_fit = []
    right_fit = []
    for line in lines:
        x1, y1, x2, y2 = line.reshape(4)
        parameters = np.polyfit((x1,x2),(y1,y2),1)
        # print(parameters)
        slope = parameters[0]
        intercept = parameters[1]
        if slope < 0:
            left_fit.append((slope,intercept))
        else:
            right_fit.append((slope,intercept))
        print(left_fit)
        print(right_fit)

我们输出一下图片大小,我们图片是以其左上角作为原点 0 ,0 来开始计算的,所以我们直线从图片底部 700 多向上绘制我们无需绘制全部可以截距一部分即可。

在这里插入图片描述

    def make_coordinates(image, line_parameters):
        slope, intercept = line_parameters
        y1 = image.shape[0]
        y2 = int(y1*(3/5)) 
        x1 = int((y1 - intercept)/slope)
        x2 = int((y2 - intercept)/slope)
        # print(image.shape)
        return np.array([x1,y1,x2,y2])

所以直线开始和终止我们给定 y1,y2 然后通过方程的斜率和截距根据y 算出 x。

    
​    averaged_lines = average_slope_intercept(lane_image,lines);
​    line_image = disply_lines(lane_image,averaged_lines)
​    combo_image = cv2.addWeighted(lane_image,0.8, line_image, 1, 1,1)
​    

cv2.imshow('result',combo_image)

在这里插入图片描述

5 最后

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1240744.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Oracle 的 Java SE、OpenJDK、Database 链接

1 访问主站 Oracle | Cloud Applications and Cloud Platform 2 开发者 2.1 OpenJDK (这里的不用登录&#xff0c;就可以下载) JDK Builds from Oracle 2.2 JavaSE (需要登录&#xff0c;才可以下载) Java Downloads | Oracle 2.3 DataBase (MySQL为例) MySQL :: MySQL Dow…

排序算法--快速排序

实现逻辑 ① 从数列中挑出一个元素&#xff0c;称为 “基准”&#xff08;pivot&#xff09;&#xff0c; ② 重新排序数列&#xff0c;所有元素比基准值小的摆放在基准前面&#xff0c;所有元素比基准值大的摆在基准的后面&#xff08;相同的数可以到任一边&#xff09;。在这…

DataFunSummit:2023年OLAP引擎架构峰会-核心PPT资料下载

一、峰会简介 OLAP技术是当前大数据领域的热门方向&#xff0c;该领域在各个行业都有广泛的使用场景&#xff0c;对OLAP引擎的功能有丰富多样的需求。同时&#xff0c;在性能、稳定性和成本方面&#xff0c;也有诸多挑战。目前&#xff0c;OLAP技术没有形成统一的事实标准&…

系统移植-交叉编译工具链

不同架构的机器码 与 汇编语言 都不可移植&#xff0c; 且二者一一对应 c语言中三种成分&#xff1a; 1.分号结尾的叫做语句 语句可以让CPU执行&#xff0c;可以进行预处理&#xff0c;编译等生成机器码 2.#开头的为预处理指令 不带分号 CPU无法执行 3.注释&#xff0c;…

AR道具特效制作工具

AR&#xff08;增强现实&#xff09;技术已经逐渐渗透到各个行业&#xff0c;为企业带来了全新的营销方式和用户体验。在这个背景下&#xff0c;美摄科技凭借其强大的技术实力和创新精神&#xff0c;推出了一款专为企业打造的美摄AR特效制作工具&#xff0c;旨在帮助企业轻松实…

Eclipse常用设置-乱码

在用Eclipse进行Java代码开发时&#xff0c;经常会遇到一些问题&#xff0c;记录下来&#xff0c;方便查看。 一、properties文件乱码 常用的配置文件properties里中文的乱码&#xff0c;不利于识别。 处理流程&#xff1a;Window -> Preferences -> General -> Ja…

stm32定时器输入捕获模式

频率测量 频率测量有两种方法 测频法&#xff1a;在闸门时间T内&#xff0c;对上升沿或下降沿计次&#xff0c;得到N&#xff0c;则评率fxN/T测周法&#xff1a;两个上升沿内&#xff0c;以标准频率fc计次得到N&#xff0c;则频率fx fc/N中界频率&#xff1a;测频法和测周法误…

Altium Designer学习笔记8

创建原理图元件&#xff1a; 画出原理图&#xff1a; 根据规则书画出原理图&#xff1a; 根据规则书画出封装图&#xff1a; 参照&#xff1a; 确认下过孔的内径和外径的最小允许值。

设计模式-创建型模式-工厂方法模式

一、什么是工厂方法模式 工厂模式又称工厂方法模式&#xff0c;是一种创建型设计模式&#xff0c;其在父类中提供一个创建对象的方法&#xff0c; 允许子类决定实例化对象的类型。工厂方法模式是目标是定义一个创建产品对象的工厂接口&#xff0c;将实际创建工作推迟到子类中。…

前端js语音朗读文本

<!DOCTYPE html> <html lang"zh"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>语音朗读</title></head><body>&l…

js双击修改元素内容并提交到后端封装实现

前面发过一个版本了&#xff0c;后来又追加了些功能。重新发一版。新版支持select和radio。 效果图&#xff1a; 右上角带有绿标的&#xff0c;是可以修改的单元格。如果不喜欢显示绿标&#xff0c;可以传递参数时指定不显示&#xff0c;如果想改为其它颜色&#xff0c;也可以…

C++多线程学习(二):多线程通信和锁

参考引用 C11 14 17 20 多线程从原理到线程池实战代码运行环境&#xff1a;Visual Studio 2019 1. 多线程状态 1.1 线程状态说明 初始化 (lnit)&#xff1a;该线程正在被创建就绪 (Ready)&#xff1a;该线程在就绪列表中&#xff0c;等待 CPU 调度运行 (Running)&#xff1a;…

PDF转Word,1行Python代码就够了,免费用

大家好&#xff0c;这里是程序员晚枫。 今年十一假期没出去旅游&#xff0c;在家里更新一套原创课程&#xff0c;&#x1f449;给小白的《50讲Python自动化办公》。 所有功能&#xff0c;都只需要1行代码&#xff0c;非常适合非程序员入门Python使用。 目前全网播放量直逼100…

基于C#实现优先队列

一、堆结构 1.1性质 堆是一种很松散的序结构树&#xff0c;只保存了父节点和孩子节点的大小关系&#xff0c;并不规定左右孩子的大小&#xff0c;不像排序树那样严格&#xff0c;又因为堆是一种完全二叉树&#xff0c;设节点为 i,则 i/2 是 i 的父节点&#xff0c;2i 是 i 的…

Django报错:RuntimeError at /home/ 解决办法

错误提示&#xff1a; RuntimeError at /home/ Model class django.contrib.contenttypes.models.ContentType doesnt declare an explicit app_label and isnt in an application in INSTALLED_APPS. 原因剖析&#xff1a; 博主在使用pycharm创建Django项目的时候&#xff0…

Linux 磁盘/分区/修复 命令

目录 1. lsblk&#xff08;list block devices&#xff09; 2. fdisk&#xff08;fragment disk&#xff09; 3. gdisk 4. mkfs&#xff08;make filesystem&#xff09; 5. df&#xff08;display file-system disk space usage&#xff09; 6. du 7. fsck&#xff08;file-sy…

npm ERR!问题解决

问题一 解决办法 两个文件夹【node_global】和【node_cache】 修改文件属性 问题二 解决办法 安装淘宝镜像 npm config set registry https://registry.npm.taobao.org 查看是否成功&#xff1a; npm config get registry 是淘宝的就ok

Springboot-热部署-IDEA2023

方式一&#xff1a;jrebel 方式二&#xff1a; 1、导入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-devtools</artifactId> <optional>true</optional> <…

Arthas 监听 Docker 部署的java项目CPU占比高的信息

1、Linux上安装Arthas wget https://alibaba.github.io/arthas/arthas-boot.jar2、docker ps 查看目标项目的容器ID 3、copy Arthas 到目标容器中 (注意有 &#x1f615; ) docker cp arthas-boot.jar d97e8666666:/4、进入到目标容器目录中 docker exec -it d97e8666666 /b…

实验7设计建模工具的使用(三)

二&#xff0c;实验内容与步骤 1. 百度搜索1-2张状态图&#xff0c;请重新绘制它们&#xff0c;并回答以下问题&#xff1a; 1&#xff09;有哪些状态&#xff1b; 2&#xff09;简要描述该图所表达的含义&#xff1b; 要求&#xff1a;所绘制的图不得与本文中其它习题一样…