数据结构-快速排序“人红是非多”?看我见招拆招

news2024/9/22 23:28:00

目录

1.快速排序

Hoare版本:

挖坑法:

前后指针版本:

快速排序的时间复杂度

2.快速排序的优化

三数取中法选key

随机数选key

三路划分法

3. 非递归实现快速排序


1.快速排序

快速排序一共有三种版本:Hoare版本、挖坑法、前后指针版本

Hoare版本:

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

也就是说如果我们要排一个升序,我们可以在待排数据中选择一个值key,把大于该值的数据放在该值的右边,小于该值的数据放在该值的左边,然后在左边的数据中同样选择一个值,重复以上步骤,同时,在右边的数据中选择一个值,重复以上步骤,直到key的左边和右边都是有序的,此时所有数据都有序了。

过程如图所示,是一个递归的过程:

下面我们先来实现一趟的排序:

可以选左边第一个数据为key,然后从右边先开始遍历,当右边找到小于key的值时,停下来,当左边遍历找到大于key的值时,也停下来,然后交换左右两边的数据,最后当左右相遇的时候,把key交换到相遇位置,这就保证了小于key的数据落入key左边,大于key的数据落在key右边。

上代码:

int PartSort(int* a, int left, int right)
{
	int key = a[left];
	int keyi = left;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		while (left < right && a[left] <= key)
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[keyi], &a[left]);
	return left;
}

我们单趟排完之后应该如下图所示:

下面来解释一下代码中的循环判断条件:

最外层循环:left<right,左右相遇时就停止。

内层循环:left < right && a[right] >= key,这段代码解决了两个可能存在的问题:

1.  死循环问题

当待排数据如下面所示就可能造成死循环:

所以a[right] >= key时继续遍历。

2. 越界问题

如果a[right] >= key时继续遍历,下面极端情况可能导致越界:

所以我们在内层循环中还要判断一下 left<right。

这就是单趟排序的代码了,我们要实现对所有数据的升序,递归调用就行了,当完成一趟排序时,返回相遇位置,然后对相遇位置的左边和右边数据继续重复进行以上操作。这有些类似于二叉树的递归问题。

代码如下:

//交换函数
Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
//快速排序
int PartSort(int* a, int left, int right)
{
	int key = a[left];
	int keyi = left;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		while (left < right && a[left] <= key)
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[keyi], &a[left]);
	return left;
}

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1,end);
}

Print(int* a, int n)
{
	for (int i = 0; i < n; i++)
	{
		printf("%d ", a[i]);
	}
	printf("\n");
}
int main()
{
	int a[] = { 9,7,5,2,4,7,1,6,0,8 };
	QuickSort(a, 0, sizeof(a) / sizeof(int) - 1);
	Print(a, sizeof(a) / sizeof(int));

	return 0;
}

整个排序过程如下图:

注意下面这段代码的作用是:当区间只有一个值或者出现区间不存在的情况的时候就返回

 if (begin >= end)
    {
        return;
    }

不知道大家有没有注意到一个情况,我们在选择key为左边的数据时,先让右边开始遍历,这是为什么呢?

首先,我们选左边的数据为key,那最终相遇位置的数就一定要比key的值小,这样交换后才能保证key的左边的值都比它小,右边的值都比它大,那我们如何保证相遇位置的值一定就比key小呢?

先给结论:

1. 左边做key,右边先走;保证了相遇位置的值比key小。

2. 右边做key,左边先走;保证了相遇位置的值比key大。

下面我们来论证一下:

结论2的论证同上。

这就是Hoare版本,但是通过上文的学习,这种版本存在的坑太多,下面我们来学一种方法避坑。

挖坑法:

挖坑法的单趟排序过程如图所示:

先选左边的一个数据,把它作为坑,并保存它的值,然后继续右边遍历找到比key小的值就停下,挖走这个值填坑,挖走后形成新的坑,左边遍历找比key大的值就停下,挖走这个值填坑......最后左右相遇,把保存的key值填坑。

代码实现如下:

//挖坑法
int PartSort2(int* a, int left, int right)
{
	int key = a[left];
	int hole = left;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		a[hole] = a[right];
		hole = right;
		while (left < right && a[left] <= key)
		{
			left++;
		}
		a[hole] = a[left];
		hole = left;
	}
	a[hole] = key;
	return hole;
}

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort2(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}
Print(int* a, int n)
{
	for (int i = 0; i < n; i++)
	{
		printf("%d ", a[i]);
	}
	printf("\n");
}
int main()
{
	int a[] = { 9,7,5,2,4,7,1,6,0,8 };
	QuickSort(a, 0, sizeof(a) / sizeof(int) - 1);
	Print(a, sizeof(a) / sizeof(int));

	return 0;
}

前后指针版本:

前后指针版本单趟排序过程如下图所示:

我们可以看到,cur在找小,如果a[cur]<key,prev++,然后交换a[prev]和a[cur],如果a[cur]>key,prev不动,整个过程中cur一直不停的往后走,直到cur越界就结束了,此时再交换key和a[prev]。

代码如下:

//前后指针版本
int PartSort3(int* a, int left, int right)
{
	int prev = left;
	int cur = left + 1;
	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] <= a[keyi])
		{
			prev++;
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}
	Swap(&a[prev], &a[keyi]);
	keyi = prev;
	return keyi;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort3(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}
Print(int* a, int n)
{
	for (int i = 0; i < n; i++)
	{
		printf("%d ", a[i]);
	}
	printf("\n");
}
int main()
{
	int a[] = {6,1,2,7,9,3,4,5,10,8};
	QuickSort(a, 0, sizeof(a) / sizeof(int) - 1);
	Print(a, sizeof(a) / sizeof(int));

	return 0;
}

快速排序的时间复杂度

时间复杂度(最好):O(N*logN)。

时间复杂度(最坏):O(N^2)。

什么时候最好呢?

当每次选的key恰好是中位数时,每次都把数据分成两份,每次减少一半的运算量,相当于二分法:

什么时候最坏呢?

当待排数据本来就是有序的时候,每次选key,选的都是最小的值,此时就相当于等差数列:

那我们选key有两种方案:

1. 随机数取key。

2. 三数取中法选key。

这样可以保证不会是最坏的情况。

2.快速排序的优化

三数取中法选key

三数取中法就是,把左边、右边和中间的三个数相比较,取出其中的中位数,把它作为key,这样就可以提高快速排序的效率。

代码如下:

//三数取中法选key
int GetMidIndex(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	if (a[mid] < a[left])
	{
		if (a[mid] > a[right])
		{
			return mid;
		}
		else if (a[right] > a[left])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else
	{
		if (a[mid] < a[right])
		{
			return mid;
		}
		else if (a[right] > a[left])
		{
			return right;
		}
		else
		{
			return left;
		}
	}
}
//快速排序
//Hoare版本
int PartSort(int* a, int left, int right)
{

	int midi = GetMidIndex(a, left, right);
	Swap(&a[left], &a[midi]);

	int keyi = left;
	while (left < right)
	{
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}
		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[keyi], &a[left]);
	return left;
}

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

以上就是三数取中法对快速排序的优化了,下面我们来看一道题,看看我们的快速排序能不能通过?

题目链接:力扣(LeetCode)

结果呢?

超出时间限制了,这其实是力扣针对快速排序三数取中专门设计的一个测试用例,他故意把左边、右边和中间的值都设的很小,这样即使你三数取中,选出的key依旧很小,接近我们上文说的最坏情况,所以会超出时间限制,那我们不玩三数取中能不能过呢?

结果很明显,还是过不了,这次他直接给了个有序的测试用例,这就直接是我们上文中所说的最坏情况了,那怎么办呢?别急,我们还有一招:

随机数选key

随机数取key的意思是,我们保证左右的数据位置不变,中间数据的位置取一个随机数,这样我们三数取中得到的key也是随机的数据,这样力扣就针对不到我们了。

代码如下:

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

//三数取中法选key
int GetMidIndex(int* a, int left, int right)
{
    //随机数取key
	int mid=left+(rand()%(right-left));

	if (a[mid] < a[left])
	{
		if (a[mid] > a[right])
		{
			return mid;
		}
		else if (a[right] > a[left])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else
	{
		if (a[mid] < a[right])
		{
			return mid;
		}
		else if (a[right] > a[left])
		{
			return right;
		}
		else
		{
			return left;
		}
	}
}
//前后指针版本
int PartSort3(int* a, int left, int right)
{
	int midi = GetMidIndex(a, left, right);
	Swap(&a[left], &a[midi]);

	int prev = left;
	int cur = left + 1;
	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] <= a[keyi])
		{
			prev++;
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}
	Swap(&a[prev], &a[keyi]);
	keyi = prev;
	return keyi;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort3(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

int* sortArray(int* nums, int numsSize, int* returnSize) {
	  srand(time(0));
    QuickSort(nums,0,numsSize-1);
    *returnSize=numsSize;
    return nums;
}

int mid=left+(rand()%(right-left));

表示中间位置取随机位置,为了防止随机数越界,我们用它取余(right-left)。

但是这就结束了吗?还是太天真了,力扣预判了你的预判,不信再运行一下:

这次它给的数据全部相同,那不管我们怎么取key值都是取的最小的,这就又相当于最坏的情况,可见这道题为了针对快速排序是费尽了心思,那我们就没办法了吗?

当然不是,我们还有终极一招,

三路划分法

何谓三路划分呢?我们之前的快速排序是把大于等于key的放在右边,小于等于key的放在左边,相当于待排数据分为两份,而三路划分的意思是把小于key的放在左边,大于key的放在右边,等于key的放在中间,如图所示:

这种方法就是把等于key的收拢在中间位置,当我们递归子区间的时候,只递归小于和大于的区间,这样当待排数据中有重复数据时,可以大大提高效率,尤其是上述测试用例,收拢之后,左右子区间直接就没有值了,都不用再递归。

下图就是三路划分的思想:

我们可以演示一下三路划分的过程:

可以看到,三路划分的本质就是:

1. 和key相等的值都被收拢到中间

2. 小的被甩到左边,大的被甩到右边。

代码如下:

//三数取中法选key
int GetMidIndex(int* a, int left, int right)
{
	//随机数取key
	int mid=left+(rand()%(right-left));
	if (a[mid] < a[left])
	{
		if (a[mid] > a[right])
		{
			return mid;
		}
		else if (a[right] > a[left])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else
	{
		if (a[mid] < a[right])
		{
			return mid;
		}
		else if (a[right] > a[left])
		{
			return right;
		}
		else
		{
			return left;
		}
	}
}

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	//三数取中
	int midi = GetMidIndex(a, begin, end);
	Swap(&a[begin], &a[midi]);

  int left=begin;
  int right=end;
  int cur=left+1;
  int key=a[left];
	//三路划分
  while (cur  <= right)
	{
		if (a[cur] < key)
		{
			Swap(&a[left], &a[cur]);
			left++;
			cur++;
		}
		else if (a[cur] > key)
		{
			Swap(&a[right], &a[cur]);
			right--;
		}
		else
		{
			cur++;
		}
	}
	//递归
	QuickSort(a, begin, left - 1);
	QuickSort(a, right + 1, end);
}

int* sortArray(int* nums, int numsSize, int* returnSize) {
	  srand(time(0));
    QuickSort(nums,0,numsSize-1);
    *returnSize=numsSize;
    return nums;
}

到这,这道题就用了三种优化方式了,而且三种方式缺一不可,那能不能解决问题呢?

当然可以啦,如果没有上述优化方式,用快排做这道题会很坑,不是快排不快,而是“人红是非多”啊,快排在这道题上被针对的体无完肤,反而堆排、希尔排序等还能通过。

3. 非递归实现快速排序

 我们前文讲的递归方式,实际上递归过程处理的是左右子区间,现在我们不能用递归,那要如何处理左右子区间呢?

其实可以用栈实现,每次从栈中拿出一段区间,单趟分割处理,然后让左右子区间入栈

代码如下(栈部分的代码可以拷贝前面章节的,这里只给核心代码):

//前后指针版本
int PartSort3(int* a, int left, int right)
{
	int prev = left;
	int cur = left + 1;
	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] <= a[keyi])
		{
			prev++;
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}
	Swap(&a[prev], &a[keyi]);
	keyi = prev;
	return keyi;
}
//非递归方式实现快排
void QuickSortNonR(int* a, int begin, int end)
{
	ST st;
	STInit(&st);
	STPush(&st, end);
	STPush(&st, begin);

	while (!STEmpty(&st))
	{
		int left = STTop(&st);
		STPop(&st);

		int right = STTop(&st);
		STPop(&st);

		int keyi = PartSort3(a, left, right);

		if (keyi + 1 < right)
		{
			STPush(&st, right);
			STPush(&st, keyi + 1);
		}

		if (left < keyi-1)
		{
			STPush(&st, keyi-1);
			STPush(&st, left);
		}
	}

	STDestroy(&st);
}

好了,以上就是快速排序,下节继续学习归并排序,

未完待续。。。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1237623.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JSP EL表达式基本使用

今天我们来说EL表达式 这在整个jsp中都是非常重要的一章 因为 如果我们用 <%属性%> 属性为空时 直接就是个 null 这个肯定是不能让用户看到的东西 所以 我们就需要EL表达式 例如 我们jsp代码编写如下 <% page contentType"text/html; charsetUTF-8" page…

抖音seo短视频矩阵源码开发部署与维护--开源

一、引言 随着抖音等短视频平台的崛起&#xff0c;越来越多的企业和个人开始关注如何在这些平台上提升曝光量和用户流量。抖音SEO&#xff08;搜索引擎优化&#xff09;是一种有效的方法&#xff0c;通过优化短视频内容和关键词&#xff0c;让更多的人找到并点击你的视频。本文…

基于PHP的动漫周边购物系统

有需要请加文章底部Q哦 可远程调试 基于PHP的动漫周边购物系统 一 介绍 此动漫周边购物系统系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。用户可注册登录&#xff0c;购物下单&#xff0c;评论等。管理员登录后台可对动漫周边商品&#xff0c;用户…

【23真题】难!下沙“小清华”难度爆增!

今天分享的是23年“下沙小清华”杭州电子科技大学843的信号与系统试题及解析。 本套试卷难度分析&#xff1a;22年杭电843考研真题&#xff0c;我也发布过&#xff0c;若有需要&#xff0c;戳这里自取&#xff01;平均分为112分&#xff0c;最高分为145分&#xff01;该院校23…

优化3种教学方法

在教育领域&#xff0c;教学方法对于学生的学习成果和兴趣至关重要。 第一种是项目式学习。这种方法鼓励学生通过完成实际的项目来获取知识&#xff0c;而不仅仅是在课堂上听讲。学生需要在实际操作中解决问题&#xff0c;这能培养他们的创新思维和实践能力。项目式学习还能提高…

验收材料-软件质量保证措施

一、 质量保障措施 二、 项目质量管理保障措施 &#xff08;一&#xff09; 资深的质量经理与质保组 &#xff08;二&#xff09; 全程参与的质量经理 &#xff08;三&#xff09; 合理的质量控制流程 1&#xff0e; 质量管理规范&#xff1a; 2&#xff0e; 加强协调管理&…

OCR是什么意思,有哪些好用的OCR识别软件?

1. 什么是OCR&#xff1f; OCR&#xff08;Optical Character Recognition&#xff09;是一种光学字符识别技术&#xff0c;它可以将印刷体文字转换为可编辑的电子文本。OCR技术通过扫描和分析图像中的文字&#xff0c;并将其转化为计算机可识别的文本格式&#xff0c;从而…

mysql开启慢查询日志

直接看原文: 原文链接:MySQL慢查询日志开启、配置、分析等操作_Code0cean的博客-CSDN博客 ------------------------------------------------------------------------------------------------------------------------------- 命令总结: 查看慢查询日志文件 tail -100f …

webGL开发微信小游戏

WebGL 是一种用于在浏览器中渲染 2D 和 3D 图形的 JavaScript API。微信小游戏本质上是在微信环境中运行的基于 Web 技术的应用&#xff0c;因此你可以使用 WebGL 来开发小游戏。以下是基于 WebGL 开发微信小游戏的一般步骤&#xff0c;希望对大家有所帮助。北京木奇移动技术有…

下载安装升讯威在线客服系统时提示风险的解决办法

客服系统的服务端程序、客服端程序、配套的配置工具涉及磁盘文件读写、端口监听&#xff0c;特别是经过混淆加密后&#xff0c;可能被部分浏览器或部分杀毒软件提示风险。请忽略并放心使用&#xff0c;如果开发软件是为了植入木马&#xff0c;这个代价可太大了&#xff0c;不如…

向量数据库,展望AGI时代

无论是向量数据库&#xff0c;还是大模型&#xff0c;归根结底&#xff0c;大家在追捧它时的心态&#xff0c;焦虑大于需求。 向量数据库的热潮&#xff0c;在一定程度上“外化”了人们的焦虑。 但这并不能否定向量数据库的实际价值&#xff0c;甚至更长远来看&#xff0c;向…

低代码!小白用10分钟也能利用flowise构建AIGC| 业务问答 | 文本识别 | 网络爬虫

一、与知识对话 二、采集网页问答 三、部署安装flowise flowise工程地址&#xff1a;https://github.com/FlowiseAI/Flowise flowise 官方文档&#xff1a;https://docs.flowiseai.com/ 这里采用docker安装&#xff1a; step1&#xff1a;克隆工程代码 &#xff08;如果网络…

FFmpeg 6.1 开放源码多媒体框架近日发布了重大更新

导读FFmpeg 6.1 开放源码多媒体框架近日发布了重大更新&#xff0c;带来了新功能、新解码器、新过滤器和许多其他变化。 在 FFmpeg 6.0 “Von Neumann “版本发布八个多月后&#xff0c;FFmpeg 6.1 被命名为 “Heaviside”&#xff0c;引入了多线程 Vulkan 硬件加速解码&#x…

2023年中国宠物清洁用品分类、市场规模及发展特征分析[图]

宠物清洁用品指专用于清洁宠物毛发、口腔、耳部、脚爪等部位的各类宠物用品&#xff0c;包括宠物香波、滴耳露、修毛刀等。宠物主对宠物清洁用品需求的出现&#xff0c;一定程度上反映出部分宠物主与宠物间的感情逐渐加深&#xff0c;并逐渐达到了较为亲密的程度。随着宠物清洁…

CentOS使用docker安装OpenGauss数据库

1.搜索OpenGauss docker search opengauss 2.选择其中一个源拉取 docker pull docker.io/enmotech/opengauss 3.运行OpenGauss docker run --name opengauss --privilegedtrue --restartalways -d -e GS_USERNAMEpostgres -e GS_PASSWORDmyGauss2023 -p 5432:5432 docker.…

webGL技术开发的软件类型

WebGL 是一种在浏览器中渲染 2D 和 3D 图形的 JavaScript API。通过 WebGL&#xff0c;你可以创建各种类型的软件项目&#xff0c;特别是那些需要强大图形渲染能力的项目。以下是一些你可以使用 WebGL 实现的软件项目类型&#xff0c;希望对大家有所帮助。北京木奇移动技术有限…

ubuntu22.04安装网易云音乐

附件&#xff1a; https://download.csdn.net/download/weixin_44503976/88557248 wget https://d1.music.126.net/dmusic/netease-cloud-music_1.2.1_amd64_ubuntu_20190428.deb wget -O patch.c https://aur.archlinux.org/cgit/aur.git/plain/patch.c?hnetease-cloud-m…

【C++进阶】二叉搜索树(BSTree)

​&#x1f47b;内容专栏&#xff1a;C/C编程 &#x1f428;本文概括&#xff1a;二叉搜索树的基本操作(查找、删除、插入)、二叉搜索树的应用&#xff0c;KV模型。 &#x1f43c;本文作者&#xff1a;阿四啊 &#x1f438;发布时间&#xff1a;2023.11.22 一、二叉搜索树 1.1…

网络和Linux网络_4(应用层)序列化和反序列化(网络计算器)

目录 1. 重新理解协议 2. 网络版本计算器 2.1 前期封装 Log.hpp sock.hpp TcpServer.hpp 第一次测试(链接) 2.2 计算器实现 第二次测试(序列化和反序列化) 第三次测试(客户端字节流) CalServer.cc CalClient.cc 3. 守护进程 3.1 守护进程和前后台进程 3.1 变成…

String类常用方法总结

目录 一.简单认识String 二.String对象的比较 1.equals 内部实现原理&#xff1a; 2.compareTo 3.compareToIgnoreCase 三.字符串查找 示例&#xff1a; 四.字符串与其他类型转化 1.数值和字符串相互转换 2.大小写相互转化 3.字符串转数组 4.格式化转化 五.字符串…