吴恩达《机器学习》9-4-9-6:实现注意:展开参数、梯度检验、随机初始化

news2024/11/15 17:36:34

一、实现注意:展开参数

在上一个视频中,讨论了使用反向传播算法计算代价函数的导数。在本视频中,将简要介绍一个实现细节,即如何将参数从矩阵展开为向量。这样做是为了在高级最优化步骤中更方便地使用这些参数。

二、梯度检验

在神经网络中使用梯度下降算法时,复杂模型可能导致一些难以察觉的错误,即使代价函数在减小,最终结果也可能并非最优解。为了解决这个问题,采用一种称为梯度检验(Gradient Checking)的数值方法,通过估计梯度值来验证我们计算的导数是否准确。

梯度检验方法

梯度检验的基本思想是在代价函数上沿着切线的方向选择离两个非常近的点,然后计算两个点的平均值,用以估计梯度。对于某个特定的参数 𝜃,计算在 𝜃-𝜀 处和 𝜃+𝜀 处的代价值,其中 𝜀 是一个很小的值(通常选取为 0.001),然后求两个代价的平均值,以估计在 𝜃 处的导数。

Octave 中的代码示例如下:

gradApprox = (J(theta + eps) - J(theta - eps)) / (2 * eps)

偏导数检验

如果 𝜃 是一个向量,我们需要对每个参数进行偏导数检验。以下是针对 𝜃1 的示例:

# 对参数𝜃1进行偏导数检验的示例
partialDerivativeTheta1 = (J(theta1 + eps, theta2, ..., thetaN) - J(theta1 - eps, theta2, ..., thetaN)) / (2 * eps)

最后,还需要对通过反向传播计算出的偏导数进行检验。计算出的偏导数存储在矩阵 𝐷𝑖𝑗(𝑙) 中。在检验时,将该矩阵展开成为向量,同时将参数矩阵 𝜃 展开为向量,对每个 𝜃 计算一个近似的梯度值,并将这些值存储于一个近似梯度矩阵中。最终,将这个近似梯度矩阵与反向传播计算的梯度矩阵进行比较。

通过梯度检验,能够更加确信我们的梯度计算是正确的,从而提高神经网络训练的可靠性。

三、随机初始化

在神经网络的训练中,任何优化算法都需要一些初始的参数。到目前为止,采用的是将所有参数初始化为 0 的方法。然而,对于神经网络来说,这种初始化方法是不可行的。如果所有参数都初始化为 0,那么第二层的所有激活单元都会具有相同的值。同样,如果将所有参数初始化为相同的非零值,结果也会相似。

为了解决这个问题,引入了随机初始化(Random Initialization)的概念。随机初始化的思想是将参数初始化为介于一定范围内的随机值,而不是固定的值。

随机初始化的代码示例

假设要随机初始化一个尺寸为 10×11 的参数矩阵,我们可以使用如下的 Octave 代码:

Theta1 = rand(10, 11) * (2 * eps) - eps

上述代码使用 rand 函数生成一个包含介于 0 和 1 之间的随机值的矩阵,然后通过乘法和减法操作将其缩放到介于负 eps 到正 eps 之间,其中 eps 是一个很小的数,通常取 0.01。

通过随机初始化,打破了对称性,防止了所有参数具有相同初始值的问题,有助于神经网络更好地学习数据的特征,提高了训练的效果。这是神经网络训练中一个重要的实现注意点。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1234684.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何制作动态表情包?一个方法快学起来

在当代的通讯工具中,动态表情包已经是人们日常交流不可缺少的一部分了。但是,很多时候网络上常见的动态表情包不能够很好表达出我们的需求时应该怎么办呢?这时候,我们可以使用gif动图制作(https://www.gif.cn/&#xf…

深入理解强化学习——马尔可夫决策过程:马尔可夫决策过程和马尔可夫过程/马尔可夫奖励过程的区别

分类目录:《深入理解强化学习》总目录 《深入理解强化学习——马尔可夫决策过程》系列前面的文章讨论到的马尔可夫过程和马尔可夫奖励过程都是自发改变的随机过程,而如果有一个外界的“刺激”来共同改变这个随机过程,就有了马尔可夫决策过程&…

板块概念相关(五)

5-板块概念相关 文章目录 5-板块概念相关一. 查询所有的版块列表二. 查询所有的概念列表三. 查询所有的地域列表四. 查询所有的版块资金支持的类型五. 查询某个版块历史记录列表,形成图表形式六. 查询某个版块历史记录列表七. 查询某个版块今日资金,形成图表形式八. 查询该板块…

接入keycloak实现单点登录

问题 1.如果跨域在keycloak管理中心Clients-Client details-Settings-Web origins添加浏览器访问地址就行 一、html引入cdn实现 页面引入 <!-- keycloak --> <script src"https://unpkg.com/keycloak-js22.0.5/dist/keycloak.js"></script> &l…

学习Rust适合写什么练手项目?【云驻共创】

Rust是一门备受关注的系统级编程语言&#xff0c;因其出色的内存安全性、高性能和并发性能而备受赞誉。对于那些希望学习和掌握Rust编程语言的人来说&#xff0c;练手项目是一个不可或缺的环节。通过实际动手完成项目&#xff0c;你可以加深对Rust语言特性和最佳实践的理解&…

ky10 server arm 在线编译安装openssl3.1.4

在线编译脚本 #!/bin/shOPENSSLVER3.1.4OPENSSL_Vopenssl versionecho "当前OpenSSL 版本 ${OPENSSL_V}" #------------------------------------------------ #wget https://www.openssl.org/source/openssl-3.1.4.tar.gzecho "安装OpenSSL${OPENSSLVER}...&q…

郎酒“掉队”,经销商们能等来春天吗?

文 | 螳螂观察&#xff08;TanglangFin&#xff09; 作者 | 渡过 有“六朵金花”之称的川酒品牌中&#xff0c;五粮液、泸州老窖、舍得、水井坊都已成功上市&#xff0c;只剩下郎酒和剑南春未上市。 与IPO的“掉队”相对应的&#xff0c;是郎酒在冲刺高端、内部管理、渠道管…

C语言进制转换(1112:进制转换(函数专题))

题目描述 输入一个十进制整数n&#xff0c;输出对应的二进制整数。常用的转换方法为“除2取余&#xff0c;倒序排列”。将一个十进制数除以2&#xff0c;得到余数和商&#xff0c;将得到的商再除以2&#xff0c;依次类推&#xff0c;直到商等于0为止&#xff0c;倒取除得的余数…

Python之staticmethod:让你的代码更简洁高效

概要 在Python中&#xff0c;staticmethod是一种非常有用的装饰器&#xff0c;它可以将一个方法转换为静态方法&#xff0c;使得该方法可以通过类名或实例名直接调用&#xff0c;而不需要传入self参数。staticmethod的使用可以让代码更加简洁、高效&#xff0c;同时也可以提高…

Fiddler抓包看这篇就够了:fiddler设置弱网测试

弱网测试 概念&#xff1a;弱网看字面意思就是网络比较弱&#xff0c;我们通称为信号差&#xff0c;网速慢。 意义&#xff1a;模拟在地铁、隧道、电梯和车库等场景下使用APP &#xff0c;网络会出现延时、中断和超时等情况。 自动化测试相关教程推荐&#xff1a; 2023最新自…

DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示

本心、输入输出、结果 文章目录 DeepMind 推出 OPRO 技术&#xff0c;可用于优化 ChatGPT 提示前言消息摘要OPRO的工作原理DeepMind的研究相关链接花有重开日&#xff0c;人无再少年实践是检验真理的唯一标准 DeepMind 推出 OPRO 技术&#xff0c;可用于优化 ChatGPT 提示 编辑…

vue-quill-editor 使用

vue-quill-editor 安装 npm install vue-quill-editor -S 使用 .....<quill-editorstyle"padding-left: 0;padding-top: .0px;margin-top: 30px;"ref"editorRef" v-model"params.content" class"ql-editor" :options"editor…

PG数据中DBeaver上传csv文件作为数据表

DBeaver 是一个开源的数据库工具&#xff0c;还是蛮好用的&#xff0c;有时候需要我们上传数据做表&#xff0c;数据为CSV格式的&#xff0c;DBeaver本身自带有功能实现的。 可打开连着的数据库&#xff0c;找到模式&#xff0c;点到下面的表里&#xff0c;选择一个表直接导入…

【Java】乡镇卫生院、社区卫生服务中心云HIS源码

云HIS采用云端SaaS服务的方式提供&#xff0c;用户通过浏览器即能访问&#xff0c;无需关注系统的部署、维护、升级等问题&#xff0c;系统充分考虑了模板化、配置化、智能化、扩展化等设计方法&#xff0c;覆盖了基层医院机构的主要工作流程&#xff0c;能够与监管系统有序对接…

Golang基础-面向对象篇

文章目录 struct结构体类的表示与封装类的继承多态的基本要素与实现interface空接口反射变量的内置pairreflect包解析Struct TagStruct Tag在json中的应用 struct结构体 在Go语言中&#xff0c;可以使用type 关键字来创建自定义类型&#xff0c;这对于提高代码的可读性和可维护…

安防监控视频云存储平台EasyCVR页面播放卡顿的优化方法

视频监控平台EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;在视频监控播放上&#xff0c;TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放&#xff0c;可同时播放多路视频流&#xff0c;也能支持视…

Milvus 2.3.功能全面升级,核心组件再升级,超低延迟、高准确度、MMap一触开启数据处理量翻倍、支持GPU使用!

Milvus 2.3.功能全面升级&#xff0c;核心组件再升级&#xff0c;超低延迟、高准确度、MMap一触开启数据处理量翻倍、支持GPU使用&#xff01; 1.Milvus 2.3版本全部升级简介 Milvus 2.3.0 不仅包含大量的社区呼声很高的新功能&#xff0c;还带来了诸如 GPU 支持、Query 架构…

使用Python处理ADC激光测距数据并绘制为图片(二)

使用Python处理ADC激光测距数据并绘制为图片 说明一、定义全局变量变二、保存和清空原始数据三、拆分原始数据为键值对四、获取标题、FigText、更新统计信息文件五、生成图片六、处理原始数据文件七、主函数入口八、测试结果 说明 1. 主要是将ADC激光测距叠加后的1024Byte数据绘…

vue-admin-template改变接口地址

修改登录接口 1.f12查看请求接口 模仿返回数据写接口 修改方式1 1.在env.devolopment修改 修改方式2 vue.config.js 改成本地接口地址 配置转发 后端创建相应接口&#xff0c;使用map返回相同的数据 修改前端请求路径 修改前端返回状态码 utils里面的request.js