目标分割技术-语义分割总览

news2024/11/21 2:26:35

前言

博主现任高级人工智能工程师,曾发表多篇SCI且获得过多次国际竞赛奖项,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。目的就是为了让零基础快速使用各类代码模型,每一篇文章都包含实战项目以及可运行代码。欢迎大家订阅一文速学-深度学习项目实战

目标分割技术-语义分割总览

目标分割是计算机视觉领域的一个重要任务,旨在从图像或视频中准确地分割出特定的目标或对象。与目标检测关注物体位置和边界框不同,目标分割要求精确地识别并标记目标的每个像素,实现对目标的像素级别理解。

定义

我们可以把目标分割拆解为两个技术实现部分:一为语义分割、二为实例分割。对于图像分类、目标检测和图像分割而言:

  • 图像分类旨在判断该图像所属类别。
  • 目标检测是在图像分类的基础上,进一步判断图像中的目标具体在图像的什么位置,通常是以外包矩形(bounding box)的形式表示。
  • 图像分割是目标检测更进阶的任务,目标检测只需要框出每个目标的包围盒,语义分割需要进一步判断图像中哪些像素属于哪个目标。但是,语义分割不区分属于相同类别的不同实例,也就是说如果存在目标物体重叠的情况,语义分割只会识别为一个共同的像素目标:在这里插入图片描述
    ,而实例分割需要区分开来:在这里插入图片描述

那么我们再对图像分割总体定义了解:在计算机视觉领域,图像分割(Object Segmentation)指的是将数字图像细分为多个图像子区域(像素的集合)的过程,并且同一个子区域内的特征具有一定相似性,不同子区域的特征呈现较为明显的差异:在这里插入图片描述

图像分割的目标就是为图像中的每个像素分类。应用领域非常的广泛:自动驾驶、医疗影像,图像美化、三维重建等等:

在这里插入图片描述

原理

简单来说,我们的目标是输入一个RGB彩色图片(height×width×3)或者一个灰度图(height×width×1),然后输出一个包含各个像素类别标签的分割图(height×width×1)。如下图所示:

在这里插入图片描述

我们肉眼可以很明显区分目标物体,但是想让计算机实现目标切割,只能输出为图片数据形式我们再进行处。在图像处理部分,我们知道图片由三维数组RGB形式构成,不同像素块之间会存在些许差异,也就是说我们可以利用这些像素差异来实现区分不同的目标物体,但是如果存在像素之间颜色差异不大,那么久比较难区分不同的物体。预测目标可以采用one-hot编码,即为每一个可能的类创建一个输出通道。也就是把上述Semantic Labels的矩阵不同数字给割裂出来:

在这里插入图片描述

当将预测结果叠加到单个channel时,它可以给出一张图像中某个特定类的所在区域:

在这里插入图片描述

对于上述目标分割图像较为感兴趣的可以去看看PASCAL VOC数据集,PASCAL VOC(Visual Object Classes)数据集是一个广泛用于目标检测、图像分类和语义分割等计算机视觉任务的数据集。该数据集由英国牛津大学计算机视觉实验室于2005年至2012年发布,并由标准化的图像注释和评估协议定义:在这里插入图片描述

  • JPEGImages中存放图片文件
  • imagesets中的segmentation中记录了用于分割的图像信息
  • SegmentationClass中是语义分割的标注信息
  • SegmentationObject中是实例分割的标注信息

在这里插入图片描述在这里插入图片描述

实现技术

了解以上基本概念之后,我们可以来了解一些实现目标分割的技术了,依然是分为两块:语义分割和实例分割来讲解。

语义分割(Semantic Segmentation)

定义: 语义分割旨在将图像中的每个像素分配到对应的语义类别,而不区分不同的实例。例如,在一张包含汽车、行人和道路的图像中,语义分割的目标是将图像中的每个像素标记为汽车、行人或道路。前面一段文章已经描述的比较具体了,不了解的再去看看前面的图片就好了。

算法: 一些常见的语义分割算法包括:

  • Fully Convolutional Networks (FCN)
  • U-Net
  • DeepLab
  • SegNet

这些算法挨个介绍,以后将陆续进行实现。传统的基于CNN的语义分割方法为了对一个像素分类,使用该像素周围的一个图像块作为CNN的输入,用于训练和预测。但是此类算法都通常有三个比较大的弊端:

  1. 计算存储效率低下,存储空间占用很高,比如对一个像素使用的图像块的大小为15×15,需要不断滑动窗口,每次滑动窗口之后再给CNN进行判别分类。因此,所需的存储空间根据滑动窗口的次数和大小需求很大。
  2. 计算效率低下,相邻的像素块基本上是重复的,针对每个像素块逐个计算卷积,这种计算也有很大程度上的重复。
  3. 分类性能受限,像素块的大小限制了感受野的大小。通常像素块的大小比整幅图像的大小小很多,只能提取一些局部特征。

后续算法在CNN上进行不断修改优化后形成了现在的语义分割算法生态。

Fully Convolutional Networks (FCN)

Fully Convolutional Networks(FCN)是一种用于图像分割的深度学习架构,由Jonathan Long、Evan Shelhamer和Trevor Darrell于2015年提出。相较于传统的卷积神经网络(CNN)架构,FCN的创新之处在于它将全连接层替换为全卷积层,从而使网络能够接受任意大小的输入图像,并输出对应大小的分割结果。

通常,传统的CNN结构在经过卷积层提取图像特征之后,会通过若干全连接层将这些特征映射成一个固定长度的特征向量。这种结构适用于图像级的分类和回归任务。举例来说,AlexNet等经典的CNN模型,特别是在图像分类任务(如ImageNet分类)中,最终的目标是得到整个输入图像的一个数值描述,通常是一个概率分布向量。

以AlexNet为例,其结构包括卷积层、池化层和全连接层。在卷积和池化层中,图像的局部特征被提取并逐渐减小空间维度。而在全连接层中,这些特征会被压缩成一个固定长度的向量,最终输出分类的概率分布。这样的设计使得模型能够在高层次上理解整个图像,并输出关于整个输入图像的全局信息,这对于图像分类是合适的。然而,对于一些需要更细粒度的信息,比如目标的位置或者像素级的分割等任务,这样的结构可能显得不够灵活。

与此不同,全卷积网络(FCN)等结构则通过替代全连接层为全卷积层,使得模型能够处理变尺寸的输入图像,并且能够输出对应大小的分割结果。这种结构更适用于像素级的任务,如语义分割或实例分割。可以理解起来比较抽象,我们看图:

以传统的VGG卷积网络为例:

在这里插入图片描述

在经历了卷积和池化之后,最后经过全连接层将7x7x512的特征压缩成一个固定长度4096的一维向量。我们再来看看FCN网络结构:

在这里插入图片描述

FCN网络结构主要分为两个部分:全卷积部分和反卷积部分,没有全连接层,也就是说不需要固定长度的特征向量,全卷积部分为一些经典的CNN网络(如VGG,ResNet等),用于提取特征,主要还是通过反卷积层来进行实现语义分割的,反卷积层(Deconvolutional Layer)通常用于上采样操作,将低分辨率的特征图映射到与输入图像相同的分辨率,以便生成像素级别的分割结果。然而,需要注意的是,术语“反卷积”在这里的含义与传统卷积的操作方向相反。

上采样 Upsampling:

在卷积过程的卷积操作和池化操作会使得特征图的尺寸变小,为得到原图像大小的稠密像素预测,需要对得到的特征图进行上采样操作。可通过双线性插值(Bilinear)实现上采样,且双线性插值易于通过固定卷积核的转置卷积(transposed convolution)实现,转置卷积即为反卷积(deconvolution)。在论文中,作者并没有固定卷积核,而是让卷积核变成可学习的参数。转置卷积操作过程如下,下图中蓝色是反卷积层的input,绿色是反卷积层的output,元素内和外圈都补0的转置卷积:
在这里插入图片描述

从上图可以看到卷积把2×2原图扩大了两圈,再通过3×3的卷积核,卷积结果图像被增大为4×4的大小。卷积后,结果图像比原图大:称之为full卷积,其实full卷积就是反卷积的过程,通过full卷积将原图扩大,增大原图的分辨率,所以对图像进行反卷积也称为对图像进行“上采样”。因此,也可以很直接地理解到,图像的卷积和反卷积并不是一个简单的变换、还原过程,也就是先把图片进行卷积,再用同样的卷积核进行反卷积,是不能还原成原图的,因为反卷积后只是单纯地对图片进行扩大处理,并不能还原成原图像。

反卷积层的目标是通过上采样将抽象的语义特征还原到更接近输入图像的原始分辨率。这有助于保留局部细节,提高分割的精度。在TensorFlow中,反卷积操作通常通过Conv2DTranspose层实现。这个层与正常的卷积层相似,但它执行的是转置卷积(transposed convolution),也被称为分数步长卷积(fractionally strided convolution)或反卷积。该操作通过在输入之间插入零元素(填充)来实现上采样:

from tensorflow.keras.layers import Conv2DTranspose

# 假设输入特征图大小为 (4, 4, 256)
input_feature_map = Input(shape=(4, 4, 256))

# 反卷积层
upsampled_feature_map = Conv2DTranspose(128, (3, 3), strides=(2, 2), padding='same')(input_feature_map)

strides=(2, 2)表示在高度和宽度方向上的步幅为2,实现了对输入特征图的上采样操作。

U-Net

U-Net是一种用于图像分割任务的深度学习架构,由Ronneberger等人于2015年提出。U-Net之所以得名,是因为其网络结构呈U形状。它在医学图像分割等领域取得了很大成功,特别适用于小样本、不平衡数据等情况。医务人员除了想要知道图像的类别以外,更想知道的是图像中各种组织的位置分布,而U-net就可以实现图片像素的定位,该网络对图像中的每一个像素点进行分类,最后输出的是根据像素点的类别而分割好的图像。

U-Net的网络结构分为两个主要部分:编码器(Encoder)和解码器(Decoder),中间是一个U形状的结构连接它们。该结构保留了图像分辨率的信息,有助于更好地捕获图像的局部和全局特征。

在这里插入图片描述

上图箭头分别代表一下转换操作:

  1. 蓝色箭头:利用3×3的卷积核对图片进行卷积后,通过ReLU激活函数输出特征通道;
  2. 灰色箭头:对左边下采样过程中的图片进行裁剪复制;
  3. 红色箭头:通过最大池化对图片进行下采样,池化核大小为2×2;
  4. 绿色箭头:反卷积,对图像进行上采样,卷积核大小为2×2;
  5. 青色箭头:使用1×1的卷积核对图片进行卷积。

具体网络架构和操作如上图展示。该U-net网络一共有四层,分别对图片进行了4次下采样和4次上采样。下章搭建语义分割将详细讲述每一层的网络操作,有代码更加具体。

DeepLab

DeepLab是由Google Research开发的一种用于图像分割任务的深度学习架构,其目标是实现高质量的语义分割。DeepLab的一系列版本不断引入新的技术和改进,其中最重要的是DeepLabV3和DeepLabV3+。

DeepLabV1:
  1. 空洞卷积(Atrous Convolution): DeepLabV1引入了空洞卷积,也称为膨胀卷积,用于扩大感受野,以更好地捕捉图像中的上下文信息。
  2. 多尺度处理: 在不同的空洞率下应用多个卷积核,以处理不同尺度的信息。
DeepLabV2:
  1. 条件随机场(Conditional Random Field,CRF): 引入了全连接CRF用于对分割结果进行精炼,以改善边界的细节。
DeepLabV3:
  1. 空洞卷积的变体: 使用了带有不同空洞率的空洞卷积模块,形成了深层空洞卷积网络(ASPP)结构。ASPP模块并行地运用多个不同的空洞率,以捕捉多尺度的上下文信息。
  2. 多尺度金字塔池化(ASPP): 用于有效地处理不同尺度的特征,提高分割性能。
  3. 全局平均池化: 使用全局平均池化层来处理不同尺寸的输入图像。
DeepLabV3+:
  1. 编码器-解码器结构: 引入了编码器-解码器结构,使用深度可分离卷积进行更高效的特征提取。
  2. Xception模型作为基础: 使用Xception模型作为编码器,提高了特征提取的效果。
  3. 解码器的空间上采样: 使用双线性插值和卷积来进行空间上采样,以将编码器的输出还原到原始分辨率。
SegNet

SegNet是一种用于图像分割任务的深度学习架构,由剑桥大学的研究团队于2015年提出。SegNet主要专注于语义分割,即将图像分割成不同的语义区域。其设计灵感来自于对深度学习在自动驾驶领域的应用,如道路分割。

SegNet包括编码器(Encoder)和解码器(Decoder)两个部分,其结构与自编码器有些相似。

编码器:

  • 编码器由卷积层和池化层组成,用于提取输入图像的高级特征。这些特征在编码器中被下采样,降低了空间分辨率。

解码器:

  • 解码器与编码器相反,由上采样层和反卷积层组成。解码器的任务是将编码器产生的低分辨率特征图还原到原始输入图像的分辨率。

(Decoder)两个部分,其结构与自编码器有些相似。

编码器:

  • 编码器由卷积层和池化层组成,用于提取输入图像的高级特征。这些特征在编码器中被下采样,降低了空间分辨率。

解码器:

  • 解码器与编码器相反,由上采样层和反卷积层组成。解码器的任务是将编码器产生的低分辨率特征图还原到原始输入图像的分辨率。

SegNet在编码器阶段使用最大池化,但与传统的最大池化不同,它会记录每个池化窗口中最大值的索引。这些池化索引将被传递到解码器,以在上采样阶段进行非线性上采样。SegNet主要用于图像分割任务,特别是在自动驾驶领域中的道路分割任务。它可以将图像中的每个像素分配到属于哪个语义类别,从而在自动驾驶系统中实现对道路、车辆、行人等的精确识别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1232626.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Simulia 2022 新功能

增材制造 达索系统增材制造解决方案实现了端到端一体化全流程解决方案,可以实现从原材料研究到创成式设计、工艺设计、工艺仿真仿真、并且还延续到增材制造完成后的热处理、线切割等工艺,涵盖了各个方面的内容。 达索系统针对增材制造各个环节在每一个…

python数据结构与算法-06_算法分析

算法复杂度分析 前面我们说了很多次时间复杂度是 O(1), O(n) 啥的,并没有仔细讲解这个 O 符号究竟是什么。 你可以大概理解为操作的次数和数据个数的比例关系。比如 O(1) 就是有限次数操作,O(n) 就是操作正比于你的元素个数。 这一章我们用更严谨的方式…

以makefile的方式在linux上编译代码(小白级别)

作者:爱塔居 作者简介:大四学生,分享自己的学习片段~ 目录 前言 一、创建主要文件 二、makefile 前言 多有不足,以供参考,欢迎大佬们指点。我是在虚拟机上执行的,应该都一样。我用的VirtualBox,…

PHP/Lerv通过经纬度计算距离获取附近商家

实际开发中,常常需要获取用户附近的商家,思路是 获取用户位置(经纬度信息)在数据库中查询在距离范围内的商家 注: 本文章内计算距离所使用地球半径统一为 6378.138 km public function mpa_list($latitude,$longitude,$distance){// $latitude 34.306465;// $longitude 10…

Redis篇---第十一篇

系列文章目录 文章目录 系列文章目录前言一、说说Redis持久化机制二、缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题三、热点数据和冷数据是什么前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章…

Android WMS——输入系统管理(十七)

一、简介 1、工作原理 输入子系统从驱动文件中读取事件后,再封装提交给 IMS,IMS 再发送给 WMS 进行处理。 Android 输入系统的工作原理概括来说,内核将原始事件写入到设备节点中,InputReader 不断地通过 EventHub 将原始事件取出来并翻译加工成 Android 输入事件,…

抖音电商双11官方数据最全汇总!

11月13日,抖音电商数据发布“抖音商城双11好物节”数据报告,展现双11期间平台全域经营情况及大众消费趋势。 报告显示,10月20日至11月11日,抖音电商里的直播间累计直播时长达到5827万小时,挂购物车的短视频播放了1697亿…

引入 requests.codes 模块

在网络应用开发中,处理HTTP请求状态码是一项常见的任务。然而,使用Python的requests库时,我们会发现一个不便之处:requests库没有提供一个方便的方式来管理和引用HTTP请求状态码。 在使用requests库进行HTTP请求时,我…

jenkins传参给robotframework

在做自动化的时候,需要使用jenkins传参给rf,rf根据传来的变量运行,在将变量传递给py脚本文件。特此记录。 一、配置jenkins 构建的命令使用如下格式即可(注意空格): cd D:\xxx\test call pybot --variabl…

【数据结构】【版本2.0】【树形深渊】——二叉树入侵

目录 引言 一、树的概念与结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.4 树在实际中的运用 二、二叉树的概念与结构 2.1 二叉树的概念 2.2 特殊二叉树 满二叉树 完全二叉树 2.3 现实中的二叉树 2.4 二叉树的性质 2.5 二叉树的存储结构 顺序存储 链式…

这篇文章带你了解:如何一次性将Centos中Mysql的数据快速导出!!!

目录 一.数据库导出 1.首先创建文件以.sql结尾的文件 2.打开名mysq的解压目录,导出数据 3.然后在查看即可 4 需要的软件 MobaXterm 一.数据库导出 1.首先创建文件以.sql结尾的文件 通过 touch ssm.sql (小编) 实际上&#xff1a…

提升办公效率,畅享多功能办公笔记软件Notion for Mac

在现代办公环境中,高效的笔记软件对于提高工作效率至关重要。而Notion for Mac作为一款全能的办公笔记软件,将成为你事业成功的得力助手。 Notion for Mac以其多功能和灵活性而脱颖而出。无论你是需要记录会议笔记、管理项目任务、制定流程指南&#xf…

光谱图像超分辨率综述

光谱图像超分辨率综述 简介 ​ 论文链接:A Review of Hyperspectral Image Super-Resolution Based on Deep Learning UpSample网络框架 1.Front-end Upsampling ​ 在Front-end上采样中,是首先扩大LR图像,然后通过卷积网络对放大图像进行…

Linux安装rabbitMq(亲测可用)解决只能本地访问的问题

安装er https://blog.csdn.net/laterstage/article/details/131513793?spm1001.2014.3001.5501下载mq wget --content-disposition "https://packagecloud.io/rabbitmq/rabbitmq-server/packages/el/7/rabbitmq-server-3.10.0-1.el7.noarch.rpm/download.rpm?distro_v…

阿里云4核8G服务器优惠价格表,最低价格501.90元6个月、983.80元1年

阿里云4核8G服务器优惠价格表,云服务器ECS计算型c7实例4核8G配置3M带宽40GB ESSD云盘(系统盘)叠加使用优惠券后价格501.90元6个月、983.80元1年,现在购买经济型e、通用算力型u1、计算型c7和计算型c8a与c8i实例4核8G配置均有优惠&a…

synchronized锁膨胀过程

轻量级锁: 使用场景:如果一个对象虽然有多线程要加锁,但加锁的时间是错开的(也就是没有竞争),那么可以 使用轻量级锁来优化。 轻量级锁原理 1.创建锁记录(Lock Record)对象&#…

IF:9.0+期刊被踢除,11月SCI/SSCI期刊目录已更新!

【SciencePub学术】2023年11月20日,科睿唯安更新了Web of Science核心期刊目录。 继上次SCI期刊目录和SSCI期刊目录更新之后,本次11月更新共有5本期刊发生变动: • SCIE:有5本期刊不再被SCIE期刊目录收录,1本SCIE期刊更…

infercnv 三回首:深入理解infercnv为何能发nature

大家好,不知你是否还记得,前两次关于infercnv的介绍。请看这里: 肿瘤单细胞转录组拷贝数分析结果解读和应用 单细胞拷贝数变异 infercnv再回首 如果下载了示例数据,并且你已经跑了上述代码,不难得到这张图&#xff1…

海外服务器相较于国内服务器有何特点?亚马逊海外服务器为何零跑全球

随着数字时代的迅猛发展,云计算基础设施的重要性愈发凸显。在这个信息爆炸的全球化时代,很多企业的海外业务的成功往往取决于是否拥有安全、可靠、高性能、可扩展、灵活且全球覆盖的云基础设施,因此对很多企业来说,选择一款优质的…

基于STM32设计的(无人)智慧超市-2023改进版

改进的内容: 增加了一个智慧超市登录入口,整个上位机只有一个APP文件。 可以选择顾客或者管理员的身份进去。优化了界面的显示。 一、项目背景 智慧超市是一种新型的零售形式,它将人工智能、物联网、云计算等技术应用到超市运营中,为消费者提供更加便捷、快捷、个性化的购…