基于学生心理学算法优化概率神经网络PNN的分类预测 - 附代码

news2025/1/19 20:22:44

基于学生心理学算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于学生心理学算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于学生心理学优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用学生心理学算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于学生心理学优化的PNN网络

学生心理学算法原理请参考:https://blog.csdn.net/u011835903/article/details/120458983

利用学生心理学算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

学生心理学参数设置如下:

%% 学生心理学参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,学生心理学-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1228174.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电子学会2023年6月青少年软件编程(图形化)等级考试试卷(四级)真题,含答案解析

青少年软件编程(图形化)等级考试试卷(四级) 一、单选题(共10题,共30分) 1. 下列积木运行后的结果是?( )(说明:逗号后面无空格) A.

【ATTCK】MITRE Caldera-路径发现插件

CALDERA是一个由python语言编写的红蓝对抗工具(攻击模拟工具)。它是MITRE公司发起的一个研究项目,该工具的攻击流程是建立在ATT&CK攻击行为模型和知识库之上的,能够较真实地APT攻击行为模式。 通过CALDERA工具,安全…

AOT:一个.Net 8最牛逼和最受欢迎关注的功能!

这次.Net 8发布,更新了诸多功能,但从各个编程社区看到大家讨论和交流最多的,还是AOT这个功能。 AOT本身在.Net 7就开始引入了,但这次.Net 8做了诸多更新: 1、增加了macOS 平台的 x64 和 Arm64 体系结构的支持&#x…

python中Thread实现多线程任务

目录 多线程概括: 使用 Thread 模块创建线程 如果不使用多线程: 多线程概括: 多线程是一种并发执行的编程方式,允许程序同时执行多个独立的线程,每个线程在程序中运行独立的任务。每个线程都是程序的基本执行单元&a…

智慧路灯控制系统设计方案思路及设计原则

智慧路灯系统依托于智慧路灯综合管理平台,实现点(智慧路灯)、线(道路)、面(城市)的三级监控,实现灯控、屏控、视频监控、数据采集、联动的统一。 1)一个城市的智慧路灯系…

Nodejs--Express框架使用

目录 一.概念 二.项目目录结构 三.app.js 四.项目需要的中间件 五.Mysql连接 六.日志配置 七.实体模型配置 八.统一结果封装 九.app.js的详细配置 十.自定义登录拦截器 十一.route路由配置 十二.controller处理 十二:静态页面: 十三&#xff…

RobotFramework进阶之自定义的python模块(十四)

引言 RobotFramework自动化框架(以下简称RF)之前文章我们讲了通过import第三方的library(RequestsLibrary等),在实际项目中第三方的包并不能满足我们的需要,此时我们可自己编写python模块(.py文…

百胜杯答题系统

近期太忙了 百胜方答题活动于近期终于告一段落,这个活动周期长,参与人数多,是我这几年做答题活动的一个巅峰之作 当然项目开发难度不大,主要是参与人数突破了百万,对我而言是一次很好的历练 具体的设计方案 百胜杯答…

Java Swing实现简单的文本编辑器

内容要求 1) 本次程序设计是专门针对 Java 课程的,要求使用 Java 语言进行具有一定代码量的程序开发。程序的设计要结合一定的算法,在进行代码编写前要能够设计好自己的算法。 本次程序设计涉及到 Java 的基本语法,即课堂上所介绍的变量、条件语句、循…

qemu + busybox + 内核实验环境搭建(2023-11)

主要是参考网上的例子,网上的一些例子可能用的busybox 老旧,编译各种问题,以及rootfs hda的方式或者ramfs的方式。可能有些概念还是不清楚,以下是最终完成测试成功的案例。 下载kernel https://cdn.kernel.org/pub/linux/kernel…

接口自动化测试很难吗?来看看这份超详细的教程!

接口自动化测试框架目的 测试工程师应用自动化测试框架的目的: 增强测试脚本的可维护性、易用性(降低公司自动化培训成本,让公司的测试工程师都可以开展自动化测试)。 以下框架以微信公众平台开放文档实战 地址:https://developers.weixin.qq.com/doc…

复杂类型,查询--学习笔记

1&#xff0c;复杂类型 解决问题&#xff1a;一些不容易获取到的数据&#xff0c;例如数组类型&#xff0c;集合类型等&#xff0c;获取他们的数据 -- 1.创建表 create table tb_array_person(name string,city_array array<string> )row format delimited fields term…

hypermesh学习总结(一)

1、hypermesh导入导出 2、hypermesh如何使用拓扑命令,连接多个几何体为一个? 3、hypermesh模式选择 分别有显示动力学模式explicit,标准模式Standard3D(静力学及模态等)

【最新Tomcat】IntelliJ IDEA通用配置Tomcat教程(超详细)

前言 IntelliJ IDEA是一个强大的集成开发环境&#xff0c;能够大大简化Java应用程序的开发和部署过程。而Tomcat作为一个流行的Java Web服务器&#xff0c;其与IntelliJ IDEA的整合能够提供便捷的开发环境&#xff0c;让开发人员更专注于代码的创作与优化。 在配置IntelliJ IDE…

ROS参数服务器(Param):通信模型、Hello World与拓展

参数服务器在ROS中主要用于实现不同节点之间的数据共享。 参数服务器相当于是独立于所有节点的一个公共容器&#xff0c;可以将数据存储在该容器中&#xff0c;被不同的节点调用&#xff0c;当然不同的节点也可以往其中存储数据。 使用场景一般存储一些机器人的固有参数&…

【2023云栖】刘一鸣:Data+AI时代大数据平台建设的思考与发布

简介&#xff1a; 本文根据2023云栖大会演讲实录整理而成&#xff0c;演讲信息如下&#xff1a; 演讲人&#xff1a;刘一鸣 | 阿里云自研大数据产品负责人 演讲主题&#xff1a;DataAI时代大数据平台应该如何建设 今天分享的主题是DataAI时代大数据平台应该如何建设&#xf…

Ubuntu系统安装Python3.6.8-Python源代码编译安装-Python环境安装

一、背景 本文将着重介绍如何在Python环境下&#xff0c;安装Python3.6.8&#xff0c;以满足在Ubuntu系统中使用Python的需求。 二、详细步骤 安装Python的方法有很多&#xff0c;本文中我们采用源代码的方式安装Python&#xff0c;首先我们需要下载Python源代码&#xff1a;源…

一起Talk Android吧(第五百五十四回:分享一个Retorfit使用错误的案例)

文章目录 1. 案例场景2. 案例现象3. 原因分析和解决方案3.1 原因分析3.2 解决方案4. 经验总结各位看官们大家好,上一回中咱们说的例子是"解析Retrofit返回的数据",本章回中将分享一个 Retrofit使用错误的案例。闲话休提,言归正转,让我们一起Talk Android吧! 1. …

Unity中Shader法线贴图(上)

文章目录 前言一、法线纹理的作用二、为什么法线贴图长这样&#xff1f;&#xff08;蓝色&#xff09;三、法线贴图能使纹理采样时&#xff0c;进行偏移采样四、在Shader中使用法线贴图1、在属性面板定义一个变量来接收法线贴图2、在使用前声明 _NormalTex3、在片元着色器中&am…

git使用及常用命令

在初入公司中&#xff0c;若使用的是git管理工具&#xff0c;需要做以下步骤&#xff1a; 1&#xff0c;常用命令在&#xff1a; &#xff08;1&#xff09;&#xff0c;git config --global user.name xxx(名字) //若不设置 那么下次提交代码时会报错 其次该设置名字和…