新版mmdetection3d将3D bbox绘制到图像

news2025/1/13 3:35:30

环境信息

使用 python mmdet3d/utils/collect_env.py收集环境信息

sys.platform: linux
Python: 3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 06:08:21) [GCC 9.4.0]
CUDA available: True
numpy_random_seed: 2147483648
GPU 0,1: NVIDIA GeForce RTX 3090
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
PyTorch: 1.8.1+cu111
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  - CuDNN 8.0.5
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, 

TorchVision: 0.9.1+cu111
OpenCV: 4.6.0
MMEngine: 0.9.1
MMDetection: 3.2.0
MMDetection3D: 1.3.0+9d3e162
spconv2.0: True

以前写过mmdetection3d中的可视化,但mmdetection3d更新后代码已经不适用了,正好我把我的工作全转移到新版mmdetection3d上来了,因此重新写了一下推理结果可视化。整体思路还是构建模型、构建数据、推理、绘制,下面分步讲解

1、构建模型

我用jupyter实现,首先需要确保jupyter的工作路径在mmdetection3d的工作路径下,不然会存在找不到mmdet3d的问题

import sys
import os
import torch
import cv2
import numpy as np

# 添加工作路径,不然找不到mmdet3d
os.chdir('/home/wistful/work/open_mmlab_mmdetection3d')
sys.path.append('/home/wistful/work/open_mmlab_mmdetection3d')


# load config
config_file = 'configs/point_cls_voxel/pointpillars_hv_secfpn_8x2-160e_kitti-3d-3class.py'
checkpoint_file = '/home/wistful/work/open_mmlab_mmdetection3d/work_dirs/pointpillars_hv_secfpn_8x2-160e_kitti-3d-3class/epoch_80.pth'

# 构建模型
from mmdet3d.apis import init_model, inference_detector
device = 'cuda:0'
model = init_model(config_file, checkpoint=checkpoint_file, device=device)

至此模型已经构建,下一步是构建数据,送入模型以获取推理结果

2、构建数据

新版mmdet3d的模型输入分为两个部分batch_inputs_dict, batch_data_samplesbatch_inputs_dict包含了模型推理所需的数据(点云、图像),batch_data_samples包含了训练时需要的bbox等信息。因此,需要构建batch_inputs_dict,我写了一个简单的函数,可以调用

build_dataloader.py文件:

from mmdet3d.registry import DATASETS
from tools.misc.browse_dataset import build_data_cfg
from mmengine.registry import init_default_scope


def load_datasets(config_file, aug=False, set='train'):
    """
    Args:
        config_file: 配置文件路径
        aug:是否数据增强(待测试)
        set:要读取的数据集,'train','test','val'

    Returns:
    """
    cfg = build_data_cfg(config_file, aug=aug, cfg_options=None)
    init_default_scope(cfg.get('default_scope', 'mmdet3d'))
    # 选择需要读取的数据集
    if set == 'train':
        dataloader = cfg.train_dataloader.dataset
    elif set == 'val':
        dataloader = cfg.val_dataloader.dataset
    elif set == 'test':
        dataloader = cfg.test_dataloader.dataset

    return DATASETS.build(dataloader)


def build_batch_dict(datasets, batch_size, device, images=False):
    """
    Args:
        device: 指定设备

        datasets: 传入数据集
        batch_size: 批次大小
        images: 加入图像

    Returns:

    """
    # TODO: 编写加入图像的代码
    points = []
    images = []
    batch_data_samples = []
    for i in range(batch_size):
        # 确保在同一个device上
        points.append(datasets[i]['inputs']['points'].to(device))

        data_samples = datasets[i]['data_samples']
        # if data_samples.gt_instances_3d
        if len(data_samples.gt_instances_3d.keys()) != 0:
            data_samples.gt_instances_3d.bboxes_3d = data_samples.gt_instances_3d.bboxes_3d.to(device)
            data_samples.gt_instances_3d.labels_3d = data_samples.gt_instances_3d.labels_3d.to(device)
    batch_inputs_dict = dict()
    batch_inputs_dict['points'] = points

    # batch_data_samples = data_samples
    return batch_inputs_dict, batch_data_samples


def cyclic_load_data_item(datasets, index, device, images=False):
    """
    Args:
        device: 指定设备
        datasets: 传入数据集
        index: 索引
        images: 加入图像

    Returns:
        单条数据,适用于循环遍历整个数据集
    """
    # TODO: 编写加入图像的代码
    points = []
    images = []
    points.append(datasets[index]['inputs']['points'].to(device))

    batch_inputs_dict = dict()
    batch_inputs_dict['points'] = points

    data_samples = datasets[index]['data_samples']
    if len(data_samples.gt_instances_3d.keys()) !=0:
        data_samples.gt_instances_3d.bboxes_3d = data_samples.gt_instances_3d.bboxes_3d.to(device)
        data_samples.gt_instances_3d.labels_3d = data_samples.gt_instances_3d.labels_3d.to(device)
    batch_data_samples = [data_samples]
    return batch_inputs_dict, batch_data_samples

下面利用这个函数,实现构建数据集

# 构建数据集
from custom_API.build_dataloader import load_datasets # 我放在了custom_API路径下,如何导入取决于读者如何存放
 
set = 'test'

# set字段表示构建的数据集
datasets = load_datasets(dataset_config, aug=False, set=set) # aug字段表示不使用数据增强

至此,datasets为一个列表,长度就是数据集的总样本数。eg:datasets[0]里面就包含了第1个样本的全部信息,下面可以看一下输出

在这里插入图片描述

3、推理与绘制

我们已经得到了整个数据集,那么我们就可以使用数据集中的任意一条数据进行推理,根据这个思路,我们也能很方便的推理完整个数据集。绘制部分的代码我使用的是旧版mmdetection3d中的代码,下面是代码:

# draw_box.py
import os

from custom_API.draw_utils import draw_lidar_bbox3d_on_img, draw_depth_bbox3d_on_img, draw_camera_bbox3d_on_img
import mmcv
from os import path as osp
import numpy as np

def show_multi_modality_result(img,
                               gt_bboxes,
                               pred_bboxes,
                               batch_data_samples,
                               out_dir,
                               filename,
                               type='train',
                               box_mode='lidar',
                               img_metas=None,
                               show=False,
                               gt_bbox_color=(61, 102, 255),
                               pred_bbox_color=(241, 101, 72)):
    """Convert multi-modality detection results into 2D results.
    将3D边框投影到2D图像平面并且可视化
    Project the predicted 3D bbox to 2D image plane and visualize them.

    Args:
        img (np.ndarray): The numpy array of image in cv2 fashion.
        gt_bboxes (:obj:`BaseInstance3DBoxes`): Ground truth boxes.
        pred_bboxes (:obj:`BaseInstance3DBoxes`): Predicted boxes.
        proj_mat (numpy.array, shape=[4, 4]): The projection matrix # 投影矩阵
            according to the camera intrinsic parameters.
        out_dir (str): Path of output directory.
        filename (str): Filename of the current frame.
        box_mode (str, optional): Coordinate system the boxes are in.
            Should be one of 'depth', 'lidar' and 'camera'.
            Defaults to 'lidar'.
        img_metas (dict, optional): Used in projecting depth bbox.
            Defaults to None.
        show (bool, optional): Visualize the results online. Defaults to False.
        颜色为B G R,不是RGB!!!
        gt_bbox_color (str or tuple(int), optional): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (255, 102, 61).
        pred_bbox_color (str or tuple(int), optional): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (72, 101, 241).
    """
    # 根据传入3D框所处的坐标系调用对应的投影方法,获取投影框
    if box_mode == 'depth':
        draw_bbox = draw_depth_bbox3d_on_img
    elif box_mode == 'lidar':
        draw_bbox = draw_lidar_bbox3d_on_img
    elif box_mode == 'camera':
        draw_bbox = draw_camera_bbox3d_on_img
    else:
        raise NotImplementedError(f'unsupported box mode {box_mode}')

    # 在out_dir下创建每个文件名字的文件夹
    # result_path = osp.join(out_dir, filename)
    # mmcv.mkdir_or_exist(result_path)
    out_dir = out_dir + type + '/'
    # 判断目录是否存在
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    else:
        pass
        # os.makedirs(out_dir)
    # mmcv.mkdir_or_exist(result_path)

    # if score_thr > 0:
    #     inds = pred_scores > score_thr
    #     pred_bboxes = pred_bboxes[inds]
    # 获取投影矩阵
    proj_mat = batch_data_samples[0].lidar2img
    proj_mat = proj_mat[0]
    proj_mat = np.array(proj_mat)
    if show:
        show_img = img.copy()
        if gt_bboxes is not None:
            show_img = draw_bbox(
                gt_bboxes, show_img, proj_mat, img_metas, color=gt_bbox_color)
        if pred_bboxes is not None:
            show_img = draw_bbox(
                pred_bboxes,
                show_img,
                proj_mat,
                img_metas,
                color=pred_bbox_color)
        mmcv.imshow(show_img, win_name='project_bbox3d_img', wait_time=0)

    if img is not None:
        # print('写入原图像')
        mmcv.imwrite(img, osp.join(out_dir, f'{filename}.png'))

    if gt_bboxes is not None:
        # 写入地面真相
        gt_img = draw_bbox(
            gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)
        mmcv.imwrite(gt_img, osp.join(out_dir, f'{filename}_gt.png'))

    if pred_bboxes is not None:
        pred_img = draw_bbox(
            pred_bboxes, img, proj_mat, img_metas, color=pred_bbox_color)
        mmcv.imwrite(pred_img, osp.join(out_dir, f'{filename}_pred.png'))

    if pred_bboxes is not None and gt_bboxes is not None:
        # print('draw_gt_bbox')
        gt_img = draw_bbox(
            gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)
        gt_and_pred_img = draw_bbox(
            pred_bboxes, gt_img, proj_mat, img_metas, color=pred_bbox_color)
        mmcv.imwrite(gt_and_pred_img, osp.join(out_dir, f'{filename}_pred_gt.png'))

# draw_utils.py
# Copyright (c) OpenMMLab. All rights reserved.
import copy

import cv2
import numpy as np
import torch
from matplotlib import pyplot as plt


def project_pts_on_img(points,
                       raw_img,
                       lidar2img_rt,
                       max_distance=70,
                       thickness=-1):
    """Project the 3D points cloud on 2D image.

    Args:
        points (numpy.array): 3D points cloud (x, y, z) to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        max_distance (float, optional): the max distance of the points cloud.
            Default: 70.
        thickness (int, optional): The thickness of 2D points. Default: -1.
    """
    img = raw_img.copy()
    num_points = points.shape[0]
    pts_4d = np.concatenate([points[:, :3], np.ones((num_points, 1))], axis=-1)
    pts_2d = pts_4d @ lidar2img_rt.T

    # cam_points is Tensor of Nx4 whose last column is 1
    # transform camera coordinate to image coordinate
    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=99999)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]

    fov_inds = ((pts_2d[:, 0] < img.shape[1])
                & (pts_2d[:, 0] >= 0)
                & (pts_2d[:, 1] < img.shape[0])
                & (pts_2d[:, 1] >= 0))

    imgfov_pts_2d = pts_2d[fov_inds, :3]  # u, v, d

    cmap = plt.cm.get_cmap('hsv', 256)
    cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255

    for i in range(imgfov_pts_2d.shape[0]):
        depth = imgfov_pts_2d[i, 2]
        color = cmap[np.clip(int(max_distance * 10 / depth), 0, 255), :]
        cv2.circle(
            img,
            center=(int(np.round(imgfov_pts_2d[i, 0])),
                    int(np.round(imgfov_pts_2d[i, 1]))),
            radius=1,
            color=tuple(color),
            thickness=thickness,
        )
    cv2.imshow('project_pts_img', img.astype(np.uint8))

    cv2.waitKey(0)


def plot_rect3d_on_img(img,
                       num_rects,
                       rect_corners,
                       color=(0, 255, 0),
                       thickness=1):
    """Plot the boundary lines of 3D rectangular on 2D images.

    Args:
        img (numpy.array): The numpy array of image.
        num_rects (int): Number of 3D rectangulars.
        rect_corners (numpy.array): Coordinates of the corners of 3D
            rectangulars. Should be in the shape of [num_rect, 8, 2].
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7),
                    (4, 5), (4, 7), (2, 6), (5, 6), (6, 7))
    # thickness = 0.5
    # print('rect_corners type:', rect_corners.dtype)
    # print('img type',type(img))
    for i in range(num_rects):
        corners = rect_corners[i].astype(np.int64)
        # print("opencv corners type:", corners.dtype)

        for start, end in line_indices:
            # cv2.line(img, (corners[start, 0], corners[start, 1]),
            #          (corners[end, 0], corners[end, 1]), color, thickness,
            #          cv2.LINE_AA)
            # print("change:", type(int(corners[start, 0])))
            cv2.line(img,
                     tuple(corners[start]),
                     tuple(corners[end]),
                     color,
                     thickness,
                     cv2.LINE_AA)
            # cv2.line(img,
            #          (int(corners[start, 0]), int(corners[start, 1])),
            #          (int(corners[end, 0]), int(corners[end, 1])),
            #          color,
            #          thickness,
            #          cv2.LINE_AA)

    # return img.astype(np.uint8)
    return img


def draw_lidar_bbox3d_on_img(bboxes3d,
                             raw_img,
                             lidar2img_rt,
                             img_metas,
                             color=(0, 255, 0),
                             thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (:obj:`LiDARInstance3DBoxes`):
            3d bbox in lidar coordinate system to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        img_metas (dict): Useless here.
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    img = raw_img.copy()
    corners_3d = bboxes3d.corners.cpu().numpy()
    num_bbox = corners_3d.shape[0]
    pts_4d = np.concatenate(
        [corners_3d.reshape(-1, 3),
         np.ones((num_bbox * 8, 1))], axis=-1)
    lidar2img_rt = copy.deepcopy(lidar2img_rt).reshape(4, 4)
    if isinstance(lidar2img_rt, torch.Tensor):
        lidar2img_rt = lidar2img_rt.cpu().numpy()
    pts_2d = pts_4d @ lidar2img_rt.T

    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)

    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)


# TODO: remove third parameter in all functions here in favour of img_metas
def draw_depth_bbox3d_on_img(bboxes3d,
                             raw_img,
                             calibs,
                             img_metas,
                             color=(0, 255, 0),
                             thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (:obj:`DepthInstance3DBoxes`, shape=[M, 7]):
            3d bbox in depth coordinate system to visualize.
        raw_img (numpy.array): The numpy array of image.
        calibs (dict): Camera calibration information, Rt and K.
        img_metas (dict): Used in coordinates transformation.
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    from mmdet3d.structures import points_cam2img
    from mmdet3d.models import apply_3d_transformation

    img = raw_img.copy()
    img_metas = copy.deepcopy(img_metas)
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    points_3d = corners_3d.reshape(-1, 3)

    # first reverse the data transformations
    xyz_depth = apply_3d_transformation(
        points_3d, 'DEPTH', img_metas, reverse=True)

    # project to 2d to get image coords (uv)
    uv_origin = points_cam2img(xyz_depth,
                               xyz_depth.new_tensor(img_metas['depth2img']))
    uv_origin = (uv_origin - 1).round()
    imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()

    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)


def draw_camera_bbox3d_on_img(bboxes3d,
                              raw_img,
                              cam2img,
                              img_metas,
                              color=(0, 255, 0),
                              thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (:obj:`CameraInstance3DBoxes`, shape=[M, 7]):
            3d bbox in camera coordinate system to visualize.
        raw_img (numpy.array): The numpy array of image.
        cam2img (dict): Camera intrinsic matrix,
            denoted as `K` in depth bbox coordinate system.
        img_metas (dict): Useless here.
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    from mmdet3d.structures import points_cam2img

    img = raw_img.copy()
    cam2img = copy.deepcopy(cam2img)
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    points_3d = corners_3d.reshape(-1, 3)
    if not isinstance(cam2img, torch.Tensor):
        cam2img = torch.from_numpy(np.array(cam2img))

    assert (cam2img.shape == torch.Size([3, 3])
            or cam2img.shape == torch.Size([4, 4]))
    cam2img = cam2img.float().cpu()

    # project to 2d to get image coords (uv)
    uv_origin = points_cam2img(points_3d, cam2img)
    uv_origin = (uv_origin - 1).round()
    imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()

    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)

下面是推理和绘制的完整代码,必要的注释已经给出。

from custom_API.draw_box import show_multi_modality_result #如何导入取决于读者如何存放
print(f'datasets length:{len(datasets)}')
data_root = 'data/kitti/' # 数据集根路径
save_root = '/home/wistful/work/open_mmlab_mmdetection3d/visual_dir/predict_imgs/' # 保存可视化结果的根路径

data_num = 100  # 最大不能超过数据集长度
# 判断一开始是读取的哪个数据集
if set == 'train' or set == 'val':
    new_set = 'training'
else:
    new_set = 'testing'
# 推理整个数据集的前data_num条数据
for i in tqdm(range(data_num), desc='process situation'):
    # cyclic_load_data_item代码位于第2步
    batch_inputs_dict, batch_data_samples = cyclic_load_data_item(datasets, index=i, device=device)  # 读取一条数据,并构建批次
    points = batch_inputs_dict['points'][0]  # 获取点云,因为是单条数据,所以直接取0

    # 获取检测结果
    result, data = inference_detector(model, points.cpu())
    bboxes_3d = result.pred_instances_3d.bboxes_3d
    labels_3d = result.pred_instances_3d.labels_3d
    scores_3d = result.pred_instances_3d.scores_3d

    # 设置阈值
    thr = 0.4
    score = (scores_3d > thr)
    bboxes_3d = bboxes_3d[score] # 根据阈值筛选

    # 读取原始图像
    img_file_path = data_root + new_set + '/image_2/' + batch_data_samples[0].img_path[0]
    image = cv2.imread(img_file_path)

    img_name = batch_data_samples[0].img_path[0].split('.')[0] # 取一下文件名
    # 保存多模态结果(调用的旧版mmdet代码接口)
    show_multi_modality_result(img=image,
                               box_mode='lidar',
                               gt_bboxes=None,
                               pred_bboxes=bboxes_3d,
                               batch_data_samples=batch_data_samples,
                               out_dir=save_root,
                               filename=img_name,
                               type=set,
                               show=False)

    # result = model(batch_inputs_dict, batch_data_samples) # model的输入与具体模型有关

运行上述代码后,会在设置的save_root下生成可视化图片
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1225993.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

11月19日

一、选择题1.一般认为,世界上第1台电子数字计算机诞生于(&#xff09;年。 A. 1946 B. 1952 C. 1959 D. 1962 1946 记&#xff1a;4 5 6 7 8 平均十年一代 一、计算机发展五代1946年&#xff0c; 世界上第一台数字电子计算机ENIAC 1.1946年开始&#xff0c;第一代电子管计算机…

<Linux>权限管理|权限分类|权限设置|权限掩码|粘滞位

文章目录 Linux权限的概念Linux权限管理a. 文件访问者的分类b. 文件类型和访问权限c. 文件权限表示方法d. 文件权限的设置权限掩码file指令粘滞位 权限总结权限作业 Linux权限的概念 Linux下有两种用户&#xff1a;超级用户(root)和普通用户。 超级用户&#xff1a;可以在Lin…

Python操作Excel常用方法汇总

目录 引言 一、使用pandas库操作Excel 1、读取Excel文件 2、写入Excel文件 3、处理Excel数据 二、使用openpyxl库操作Excel 1、读取Excel文件 2、写入Excel文件 3、处理Excel数据 三、高级功能 总结 引言 Python是一种功能强大的编程语言&#xff0c;它可以用来处理…

MongoDB相关基础操作(库、集合、文档)

文章目录 一、库的相关操作1、查看数据库2、查看当前库3、创建数据库4、删除数据库 二、集合的相关操作1、查看库中所有集合2、创建集合2.1、显示创建2.2、隐式创建 3、删除集合 三、文档的相关操作1、插入文档1.1、插入单条文档1.2、插入多条文档1.3、脚本方式 2、查询文档3、…

电商平台革新:食派士小程序的无代码开发与广告推广集成

食派士小程序&#xff1a;无代码开发的连接神器 食派士小程序&#xff0c;作为上海食派士商贸发展有限公司的专利产品&#xff0c;是一种凭借无代码开发&#xff0c;就能实现与各种系统的连接和集成的电商解决方案。它采用无代码开发的方式&#xff0c;避免了API开发的复杂过程…

原型网络Prototypical Network的python代码逐行解释,新手小白也可学会!!-----系列8

文章目录 前言一、原始代码二、对每一行代码的解释&#xff1a;总结 前言 这是该系列原型网络的最后一段代码及其详细解释&#xff0c;感谢各位的阅读&#xff01; 一、原始代码 if __name__ __main__:##载入数据labels_trainData, labels_testData load_data() # labels_…

常见树种(贵州省):001松类

摘要&#xff1a;本专栏树种介绍图片来源于PPBC中国植物图像库&#xff08;下附网址&#xff09;&#xff0c;本文整理仅做交流学习使用&#xff0c;同时便于查找&#xff0c;如有侵权请联系删除。 图片网址&#xff1a;PPBC中国植物图像库——最大的植物分类图片库 一、华山松…

麻将馆电脑计费系统,棋牌室怎么用电脑控制灯计时,佳易王计时计费系统软件下载

麻将馆电脑计费系统&#xff0c;棋牌室怎么用电脑控制灯计时&#xff0c;佳易王计时计费系统软件下 棋牌室电脑灯控系统&#xff0c;需要安装一个灯控器&#xff0c;软件发出开灯和关灯的指令&#xff0c;相应的灯就打开或关闭。在点击开始计时的时候&#xff0c;开灯&#xff…

黔院长 | 为什么要调经络?原来通经络对人体健康如此重要!

人体的组成较为复杂&#xff0c;在外有皮肤、毛发&#xff1b;在内有经络、五脏&#xff1b;其他还有我们看不到的精气、津液等等&#xff0c;也因此人体会生各种各样的疾病。 为什么说经络畅通对人体健康如此重要&#xff1f;身体内外始终是一个统一的整体&#xff0c;内外之间…

vue3基础学习

##以前怎么玩的? ###MVC Model:Bean View:视图 Controller ##vue的ref reactive ref:必须是简单类型 reactive:必须不能是简单类型 ###创建一个Vue项目 npm init vuelatest ###生命周期 ###setup相关 ####Vue2的一些写法 -- options API ####Vue3的写法 组合式API Vu…

Python —— Mock接口测试

前言 今天跟小伙伴们一起来学习一下如何编写Python脚本进行mock测试。 什么是mock? 测试桩&#xff0c;模拟被测对象的返回&#xff0c;用于测试 通常意义的mock指的就是mock server, 模拟服务端返回的接口数据&#xff0c;用于前端开发&#xff0c;第三方接口联调 为什么…

数据结构与算法-哈夫曼树与图

&#x1f31e; “永远积极向上&#xff0c;永远豪情满怀&#xff0c;永远热泪盈眶&#xff01;” 哈夫曼树与图 &#x1f388;1.哈夫曼树&#x1f52d;1.1树与二叉树的转换&#x1f52d;1.2森林与二叉树的转换&#x1f52d;1.3哈夫曼树&#x1f50e;1.3.1哈夫曼树的概念&#x…

大数据HCIE成神之路之数学(2)——线性代数

线性代数 1.1 线性代数内容介绍1.1.1 线性代数介绍1.1.2 代码实现介绍 1.2 线性代数实现1.2.1 reshape运算1.2.2 转置实现1.2.3 矩阵乘法实现1.2.4 矩阵对应运算1.2.5 逆矩阵实现1.2.6 特征值与特征向量1.2.7 求行列式1.2.8 奇异值分解实现1.2.9 线性方程组求解 1.1 线性代数内…

基于STM32单片机数字电压表自动切换量程及源程序

一、系统方案 1、本设计采用这STM32单片机作为主控器。 2、液晶1602显示。 3、内部ADC采集电压0-12V&#xff0c;自动切换档位。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 u8 i; u16 a,b,c,d; u16 adcx; float adc; unsigned char datas…

AIGC实战 - 使用变分自编码器生成面部图像

AIGC实战 - 使用变分自编码器生成面部图像 0. 前言1. 数据集分析2. 训练变分自编码器2.1 变分自编码器架构2.2 变分自编码器分析 3. 生成新的面部图像4. 潜空间算术5. 人脸变换小结系列链接 0. 前言 在自编码器和变分自编码器上&#xff0c;我们都仅使用具有两个维度的潜空间。…

Alien Skin Exposure2024免费版图片颜色滤镜插件

Alien Skin Exposure一款非常专业的图片后期处理软件&#xff0c;内含500多种照片滤镜。是一款图片后期处理功能非常强大的软件。这款软件可以对图片的后期效果做很好的处理。 打开Alien Skin Exposure软件&#xff0c;会显示下面这个界面&#xff0c;如图1. ExposureX8win-安…

爱奇艺大数据离在线混部

混部作为一种提高资源利用率、降低成本的的方案&#xff0c;被业界普遍认可。爱奇艺在云原生化与降本增效的过程中&#xff0c;成功将大数据离线计算、音视频内容处理等工作负载与在线业务进行了混部&#xff0c;并且取得了阶段性收益。本文重点以大数据为例&#xff0c;介绍从…

图解API设计风格,看一眼就忘不了了!

点击下方“JavaEdge”&#xff0c;选择“设为星标” 第一时间关注技术干货&#xff01; 免责声明~ 任何文章不要过度深思&#xff01; 万事万物都经不起审视&#xff0c;因为世上没有同样的成长环境&#xff0c;也没有同样的认知水平&#xff0c;更「没有适用于所有人的解决方案…

反弹Shell

概述 反弹shell&#xff08;reverse shell&#xff09;就是控制端监听在某TCP/UDP端口&#xff0c;被控端发起请求到该端口&#xff0c;并将其命令行的输入输出转到控制端。reverse shell与telnet&#xff0c;ssh等标准shell对应&#xff0c;本质上是网络概念的客户端与服务端…

原型网络Prototypical Network的python代码逐行解释,新手小白也可学会!!-----系列7(承接系列6)

文章目录 前言一、原始代码---保存原型点,加载原型点二、代码逐行解释 前言 此部分为原型网络的两个函数&#xff0c;分别为保存原型点函数和加载原型点函数&#xff0c;与之前的系列相承接。 一、原始代码—保存原型点,加载原型点 def save_center(self,path):datas []for …