linux进程之进程的优先级➕环境变量

news2024/12/27 13:16:05

文章目录

  • 1.优先级的认识
    • 1.1优先级的介绍
    • 1.2初识优先级
    • 1.3ps指令
    • 1.4查看/修改进程的优先级
    • 1.5对优先级的认识
    • 1.6对进程的深一步理解
  • 2.环境变量
    • 2.0环境变量相关的命令
    • 2.1环境变量的概念
    • 2.2常见/查看环境变量
    • 2.3环境变量的作用
    • 2.4修改环境变量
      • 1.将zombie可执行程序放到PATH现有的路径下(不建议)
      • 2. 把当前可执行程序的路径放到PATH中(只在本次登录有效)
    • 2.5查看所有环境变量
    • 2.6环境变量的组织方式
    • 2.6通过代码获取环境变量
      • 1.main()函数的参数
        • 1.1环境变量参数--env
        • 1.2命令行参数---argc/argv
          • 1.初识main()命令行参数
          • 2.命令行参数的应用
      • 2.第三方全局变量environ获取
      • 3.通过系统调用获取环境变量
    • 2.7局部变量
      • 1.介绍
      • 2.应用--shell脚本

1.优先级的认识

1.1优先级的介绍

为什么要有优先级?

  • CPU资源有限,被执行的进程很多,需要通过某种方式竞争资源。
  • 配置进程优先级对多任务环境的linux很有用,可以改善系统性能。
  • 把某些不重要的进程运行到指定的CPU上,大大改善系统整体性能

什么是优先级?

  1. 用来确定CPU资源分配的先后顺序
  2. 调度器调度进程到CPU执行的指标
  3. 进程的优先级在有评判方的存在时才有意义 如高考存在时 班级第一名才有"第一"的意义
  4. 可以用数据来表明优先级 如1,2,3…
  5. 他也是PCB中成员属性
    在这里插入图片描述

1.2初识优先级

1.3ps指令

Linux的ps指令是用来查看系统进程的命令,类似于Windows任务管理器中查看到的进程的功能
在这里插入图片描述
ps -al : 查看当前会话的进程
UID: user id 执行者的身份
PRI: priority 进程的优先级/程序被CPU执行的先后顺序 默认是80 值越小优先级越高 越早被执行
NI: nice nice值 进程优先级的修正数值

  1. PRI(new) = PRI(old) + nice
  2. nice值为负值,优先级值变小,优先级变高,越快被执行
  3. 调整进程优先级,在Linux下就是调整进程nice值
  4. nice取值范围是-20~19,共40个级别。
  5. 进程的nice值不是进程的优先级,进程nice值会影响进程的优先级变化
  6. nice值是进程优先级的修正数据

1.4查看/修改进程的优先级

法一:

cmd: top r PID nice-value
进入任务管理器 按r 进入重新设值模式 输入目标进程的PID 按回车 输入新nice

法二

在这里插入图片描述
在这里插入图片描述
renice指令: 运行时调nice值

法三:

nice: 启动时调

法四:

系统接口: setproority/getpriority

1.5对优先级的认识

  1. CPU在意的不是谁的优先级最高 而是想让每个进程的优先级趋于平衡 让所有进程运行时可被雨露均沾
  2. 如果有进程优先级差距太大 会导致这一进程每次最先被执行 这会打破平衡

1.6对进程的深一步理解

  1. 竞争性: 系统进程数目众多,CPU资源只有少量,甚至1个,进程之间是具有竞争属性的。为了高效完成任务,更合理竞争相关资源,便具有了优先级
  2. 独立性: 多进程运行,独享各种资源,多进程运行期间互不干扰 [QQ卡壳不影响WeChat/父进程子进程也是具有独立性的(虽然共享了代码)]
  3. 并行: 多个进程在多个CPU下同时运行,这称之为并行

在这里插入图片描述

  1. 并发: 多个进程在一个CPU下采用进程切换的方式,在一段时间之内,让多个进程得以推进,称之为并发

一个进程并不是在CPU上执行结束才离开的 理解:

  1. 每个进程都有被允许允许的时间限制 ---- 时间片 时间达标不在执行
  2. 未达到时间限制 但自己不想执行了 可以出让给下一进程
  3. 未达到时间限制 但下一进程比自己优先级高 自己的时间片被抢占

在这里插入图片描述

对进程切换的理解

在这里插入图片描述

  1. 进程被CPU调度执行 CPU中的寄存器要存储进程的临时数据 如:函数栈帧首尾记录寄存器 函数传值返回拷贝寄存器 寄存器中存储的临时数据叫做此进程的上下文
  2. 因为多进程需要不断切换 所以要考虑切换时上下文的去向
  3. 切换过程中 上下文不可被丢弃 而是进程被切换下来时 带走自己的上下文
  4. 带走的目的: 为了再次执行时 恢复自己的上下文 继续未执行完的操作 虽然中途被切换下来 但是再次被调度时 能像未被打断那样继续执行
  5. CPU内的寄存器只有一份 而多进程有多份上下文 所以这一份寄存器 是给正在被执行的进程使用的
  6. 就好比你去图书馆 来的时候带着自己的书包 走的时候再带走 如果不带走 下次来极大可能已经没了
  7. 又好比你上大学上到一半 想去参军 那么你走的时候要把自己的东西带走并通知学校保留的你学籍 退伍时可以继续学习

2.环境变量

2.0环境变量相关的命令

  1. echo: 显示某个环境变量值
  2. export: 设置一个新的环境变量
  3. env: 显示所有环境变量
  4. unset: 清除环境变量
  5. set: 显示本地定义的shell变量和环境变量

2.1环境变量的概念

环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数
环境变量通常具有某些特殊用途具有特定功能,在系统当中通常具有全局特性

如:C/C++代码链接的时候,不知道所链接的动态静态库在哪里,但是照样可以链接成功生成可执行程序,原因就是有相关环境变量帮助编译器进行查找

2.2常见/查看环境变量

PATH : 指定命令的搜索路径
HOME : 指定用户的主工作目录(即用户登陆到Linux系统中时,默认的目录)
SHELL : 当前Shell,它的值通常是/bin/bash

echo $NAME //NAME:环境变量名称
在这里插入图片描述

2.3环境变量的作用

在xshell下 使用ls指令有两种方式 带路径/不带路径

在这里插入图片描述

前面我们已经了解到 ls也是个可执行程序 那为什么我们写的可执行程序不能不带路径运行呢

在这里插入图片描述

回答:

PATH: 运行ls指令时 会在PATH下查找ls的路径 找到后开始运行此路径下的ls

2.4修改环境变量

1.将zombie可执行程序放到PATH现有的路径下(不建议)

  1. 实际上是把你自己写的可执行程序安装到了指定路径
  2. 污染环境变量已配置好的路径下的命令池: 已配置好的如ls/pwd/touch等 把自己的可执行程序放进去毫无用处

2. 把当前可执行程序的路径放到PATH中(只在本次登录有效)

在这里插入图片描述

在这里插入图片描述

2.5查看所有环境变量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.6环境变量的组织方式

每个程序都会收到一张环境表(一个字符指针数组,每个指针指向一个以’\0’结尾的环境字符串)
在这里插入图片描述

2.6通过代码获取环境变量

1.main()函数的参数

argc,*argv: 命令行参数    *env: 环境变量参数: 每一个进程启动时 启动该进程的进程传递的环境变量信息以env参数传导
int main(int argc, char* argv[],char* env[])
{
	return 0;
}
1.1环境变量参数–env

在这里插入图片描述
在这里插入图片描述

1.2命令行参数—argc/argv
1.初识main()命令行参数

在这里插入图片描述

在这里插入图片描述

2.命令行参数的应用

在这里插入图片描述

在这里插入图片描述

命令行参数的意义/作用

  1. 让一个程序通过不同的选项调用特定的语句实现不同的功能
  2. linux的指令ls/pwd/touch等都是由命令行参数编写的 他们一个个都是可执行程序 且可以搭配不同的选项实现不同的功能

在父进程下写的指令如 ./arg -a 子进程的程序是如何拿到的?

父进程bash先获取 然后传给子进程
换言之 命令行参数也是子进程的父进程

2.第三方全局变量environ获取

libc中定义的全局变量environ指向环境变量表,environ没有包含在任何头文件中,使用时要用extern声明。
在这里插入图片描述

在这里插入图片描述

#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[])
{
extern char **environ;
int i = 0;
for(; environ[i]; i++){
printf("%s\n", environ[i]);
}
return 0;
}

3.通过系统调用获取环境变量

在这里插入图片描述

#include <stdio.h>
#include <stdlib.h>
int main()
{
printf("%s\n", getenv("PATH"));
return 0;
}

当前进程的环境变量信息是从哪来的?

是父进程传的 从父进程那里继承得来的

如何证明?

  1. 当登录服务器时 OS会将配置文件中的环境变量给bash(父进程)
  2. 在bash下 执行可执行程序时的进程是bash的子进程 子进程的环境变量继承于父进程
  3. Linux下,父进程和子进程类似目录和文件组成一棵多叉树 由于环境变量是子进程继承父进程 所以环境变量具有全局属性
  4. 在终端下执行一个可执行程序./test 显示进程的PID可以看到test进程的父进程就是bash
  5. 在父进程即bash下执行export hello = 你好 在test.c中编写代码: printf("%s\n", getenv("hello"));命令行执行env | grep hello 会显示hello = 你好 运行test会输出你好
  6. 在bash父进程下导出一个环境变量 子进程下的代码可以输出 由此得知 子进程的环境变量是继承父进程的

2.7局部变量

1.介绍

set: 获取bash创建时所有变量
env: 只获取环境变量
在这里插入图片描述
ape被称为局部普通变量 是命令行独有的 不可以向上面的hello在代码运行时输出
ape前+export可以修订为环境变量(具有全局属性可以被子进程继承)

2.应用–shell脚本

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1224370.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IOS object-c大屏图表 PNChart 折线图 曲线图

折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间&#xff08;根据常用比例设置&#xff09;而变化的连续数据&#xff0c;因此非常适用于显示在相等时间间隔下数据的趋势。在折线图中&#xff0c;类别数据沿水平轴均匀分布&#xff0c;所有值数…

​软考-高级-系统架构设计师教程(清华第2版)【第19章 大数据架构设计理论与实践 (P691~716)-思维导图】​

软考-高级-系统架构设计师教程&#xff08;清华第2版&#xff09;【第19章 大数据架构设计理论与实践 &#xff08;P691~716&#xff09;-思维导图】 课本里章节里所有蓝色字体的思维导图

AI Navigation导航系统_unity基础开发教程

AI Navigation导航系统 安装插件烘焙导航系统障碍物创建人物的AI导航动态障碍物 在unity编辑器中&#xff0c;有一个灰常好用的插件&#xff1a;Navigation。有了它1&#xff0c;你就可以实现人物自动走到你鼠标点击的位置&#xff0c;而且还会自动避开障碍物&#xff0c;下面就…

7、传统CV之高斯滤波

这一节在上一节均值滤波的基础上,再进阶一下,了解一下什么是高斯滤波。 首先,如上一节所说,均值滤波是利用一个窗口在图片上滑动,每次都计算窗口内能看到的像素的平均值,然后将平均值作为滤波的输出,从而可以起到平滑图像、去噪点的作用。 有没有发现,此时并没有特别…

SARAS-Net: Scale and Relation Aware Siamese Network for Change Detection

SARAS-Net&#xff1a;用于变化检测的尺度和关系感知的孪生网络 AAAI Chao-Peng Chen, Jun-Wei Hsieh, Ping-Yang Chen, Yi-Kuan Hsieh, Bor-Shiun Wang 2023 摘要&#xff1a;变化检测(CD)旨在找出不同时间两幅图像之间的差异&#xff0c;并输出变化图来表示该区域是否发生了…

C++17中std::variant的使用

可变参数模板类std::variant表示类型安全联合体(type-safe union)。std::variant的实例在任何给定时间要么保存其替代类型之一的值&#xff0c;要么在错误的情况下无值。 与union一样&#xff0c;如果std::variant保存某个对象类型T的值&#xff0c;则T的对象表示形式将直…

heatmap | cell cycle genes in Seurat

目的&#xff1a;使用bulk 数据&#xff0c;查看HeLa 双胸苷阻断法 细胞同步化 释放 [0, 3, 4.5, 6, 9, 10.5, 12, 15, 18, 19.5, 21, 22.5, 25.5, 30] 小时后 cell cycle 基因的表达情况。 1.结果 S phase G2M phase S G2M phase 不方便看&#xff0c;横过来看&#xff1a;…

Windows上搭建一个网站(基本生产环境)

前言 本博客记录的是Windows上一次网站搭建的过程&#xff0c;主要是在前端采用的是React&#xff0c;后端采用的是Flask&#xff0c;记录一下生产版本搭建流程和坑点&#xff0c;供有缘人一起进步&#xff0c;当然本博客还存在很多不足。 前端项目构建生产版本 以React为例…

【C++】容器string的常用成员函数接口

目录 string - C Reference 1 容量相关 1.1 size/length 1.2 capacity 1.3 resize 1.4 reserve 1.5 empty 2 运算符重载 2.1 operator 2.2 operator[] 2.3 operator&#xff08;非成员函数&#xff09; 2.4 operator 2.5 operator>> && operator<…

​软考-高级-系统架构设计师教程(清华第2版)【第20章 系统架构设计师论文写作要点(P717~728)-思维导图】​

软考-高级-系统架构设计师教程&#xff08;清华第2版&#xff09;【第20章 系统架构设计师论文写作要点&#xff08;P717~728&#xff09;-思维导图】 课本里章节里所有蓝色字体的思维导图

人工智能-循环神经网络通过时间反向传播

到目前为止&#xff0c;我们已经反复提到像梯度爆炸或梯度消失&#xff0c; 以及需要对循环神经网络分离梯度。 例如&#xff0c;我们在序列上调用了detach函数。 为了能够快速构建模型并了解其工作原理&#xff0c; 上面所说的这些概念都没有得到充分的解释。 本节将更深入地探…

SpringSecurity6 | 自动配置(下)

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; Java从入门到精通 ✨特色专栏&#xf…

CCF CSP认证 历年题目自练Day47

题目 试题编号&#xff1a; 201712-3 试题名称&#xff1a; Crontab 时间限制&#xff1a; 10.0s 内存限制&#xff1a; 256.0MB 样例输入 3 201711170032 201711222352 0 7 * * 1,3-5 get_up 30 23 * * Sat,Sun go_to_bed 15 12,18 * * * have_dinner 样例输出 201711170…

51.Sentinel微服务保护

目录 &#xff08;1&#xff09;初识Sentinel。 &#xff08;1.1&#xff09;雪崩问题及解决方案。 &#xff08;1.1.1&#xff09;雪崩问题。 &#xff08;1.1.2&#xff09;解决雪崩问题的四种方式。 &#xff08;1.1.3&#xff09;总结。 &#xff08;1.2&#xff09;…

【LeetCode刷题-滑动窗口】--345.反转字符串中的元音字母

345.反转字符串中的元音字母 class Solution {public String reverseVowels(String s) {int len s.length();if(len < 2){return s;}char[] charArray s.toCharArray();int left 0,right len - 1;while(true){while(left < len && checkVowels(charArray[lef…

C语言实现冒泡排序(超详细)

排序算法 - 冒泡排序 什么是冒泡排序&#xff1f;冒泡排序有啥用呢&#xff1f;冒泡排序的实现代码讲解冒泡排序的总结 什么是冒泡排序&#xff1f; 冒泡排序是一种简单的排序算法&#xff0c;它重复地遍历要排序的列表&#xff0c;一次比较两个元素&#xff0c;如果它们的顺序…

【Linux】第十七站:进程创建与进程终止

文章目录 一、进程创建1.fork函数2.写时拷贝3.批量化创建多个进程 二、进程终止1.进程退出场景2.进程退出的方法&#xff08;1&#xff09;exit和return&#xff08;2&#xff09;_exit和exit 一、进程创建 1.fork函数 在linux中fork函数时非常重要的函数&#xff0c;它从已存…

【总结】坐标变换和过渡矩阵(易忘记)

xCy&#xff0c;此为x到y的坐标变换。 [β1,β2,…,βn] [α1,α2,…αn]C&#xff0c;此为基α到基β的过渡矩阵。 这个概念经常忘记。。。alpha到beta看来就是alpha后面加一个过渡矩阵了&#xff0c;很直观。坐标变换就是根据过渡矩阵和基本形式推一推得到吧&#xff0c;记…

若依前后端分离版,快速上手

哈喽~大家好&#xff0c;这篇来看看若依前后端分离版&#xff0c;快速上手&#xff08;肝了挺久的&#xff09;。 &#x1f947;个人主页&#xff1a;个人主页​​​​​ &#x1f948; 系列专栏&#xff1a;【Springboot和Vue全栈开发】…

LeetCode算法题解(动态规划)|LeetCoed62. 不同路径、LeetCode63. 不同路径 II

一、LeetCoed62. 不同路径 题目链接&#xff1a;62. 不同路径 题目描述&#xff1a; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下…